
S12compact
Hardware Version 1.10

User Manual

July 4 2008

Copyright (C)2002-2008 by
ELMICRO Computer GmbH & Co. KG
Hohe Str. 9-13 D-04107 Leipzig, Germany
Tel.: +49-(0)341-9104810
Fax: +49-(0)341-9104818
Email: leipzig@elmicro.com
Web: http://elmicro.com

This manual and the product described herein were designed
carefully by the manufacturer. We have made every effort to avoid
mistakes but we cannot guarantee that it is 100% free of errors.

The manufacturer's entire liability and your exclusive remedy shall
be, at the manufacturer's option, return of the price paid or repair or
replacement of the product. The manufacturer disclaims all other
warranties, either expressed or implied, including but not limited to
implied warranties of merchantability and fitness for a particular purpo-
se, with respect to the product including accompanying written material,
hardware, and firmware.

In no event shall the manufacturer or its supplier be liable for any
damages whatsoever (including, without limitation, damages for loss of
business profits, business interruption, loss of business information, or
other pecuniary loss) arising out of the use of or inability to use the
product, even if the manufacturer has been advised of the possibility of
such damages. The product is not designed, intended or authorized for
use in applications in which the failure of the product could create a
situation where personal injury or death may occur. Should you use the
product for any such unintended or unauthorized application, you shall
indemnify and hold the manufacturer and its suppliers harmless against
all claims, even if such claim alleges that the manufacturer was negli-
gent regarding the design or implementation of the product.

Product features and prices may change without notice.

All trademarks are property of their respective holders.

S12compact

Contents

27Real Time Clock (RTC) .
26Extra Ports PARIN and PAROUT .
25SPI Subsystem .
23USB Interface .
23IF-Module Connection .
22RS232 Interface .
20Buzzer .
20Indicator-LED .
18Integrated EEPROM .
16Integrated A/D-Converter .
15Operating Modes, BDM Support .
14Clock Generation and PLL .
13Reset Generation .
12Controller Core, Power Supply .
12Schematic Diagram .

126. Circuit Description .

115. Mechanical Dimensions .

9Solder Bridges .
9Jumpers .

94. Jumpers and Solder Bridges .

73. Parts Location Diagram .

62. Quick Start .

5Package Contents .
4Optional Components .
3Technical Data .

31. Overview .

User Manual

1

459. Memory Map .

41Monitor Commands .
41Usage .
39Redirected Interrupt Vectors .
38Write Access to Flash and EEPROM .
38Autostart Function .
38Serial Communication .

388. TwinPEEKs Monitor .

37Additional Information on the Web .
37Startup Code .
37Behaviour after Reset .

377. Application Hints .

36Bus Interface .
34CAN Interface .
32IIC-Bus .
31Serial Data Flash (SDF) .
30D/A-Converter (DAC) .
29A/D-Converter (ADC) .

S12compact

2

1. Overview
The S12compact is a versatile controller module based on the

HCS12 16-bit microcontroller family from Motorola. It combines
compact size (Half-Euro form factor, 80mm x 100mm) with powerful
computing features and a rich set of peripherals. The controller module
can be used for a wide range of applications, e.g. industrial controllers,
measuring devices and data loggers.

The S12compact is equipped with a MC9S12DP512 microcontrol-
ler unit (MCU). It contains a 16-bit HCS12 CPU, 512KB of Flash
memory, 14KB RAM, 4KB EEPROM and a large amount of peripheral
function blocks, such as SCI, SPI, CAN, IIC, Timer, PWM, ADC and
General-Purpuse-I/Os. The MC9S12DP512 has full 16-bit data
paths throughout. An integrated PLL-circuit allows adjusting perfor-
mance vs. current consumption according to the needs of the user
application.

In addition to the on-chip controller functions, the S12compact
module provides a number of useful peripheral options: 16-bit
A/D-Converter and 16-bit D/A-Converter including precision voltage
reference, battery-backed Real Time Clock (RTC), USB-Interface and
2MB (16Mbit) extra memory using Serial Data Flash.

For the HCS12 microcontrollers, a wide range of software tools
(Monitors, C-Compilers, BDM-Debuggers) is available to accelerate the
development process.

Technical Data

w MCU MC9S12DP512 with LQFP112 package (SMD)
w HCS12 16-bit CPU, uses same programming model and

command set as the HC12
w 16 MHz crystal clock, up to 25 MHz bus clock using PLL
w 512KB Flash
w 4KB EEPROM
w 14KB RAM

User Manual

3

w 2x SCI - asynch. serial Interface (e.g. RS232, LIN)
w 3x SPI - synch. serial Interface
w 1x IIC - Inter-IC-Bus
w 5x msCAN-Module (CAN 2.0A/B-compatible)
w 8x 16-Bit Timer (Input Capture/Output Compare)
w 8x PWM (Pulse Width Modulator)
w 16-channel 10-bit A/D-Converter
w BDM-Interface for Download and Debugging
w Special LVI-Circuit (Reset Controller)
w Serial Interface with RS232-Transceiver (for PC connection)
w Second serial port for IF-Modules (RS232, RS485, LIN...)
w Indicator-LED
w Sound Transducer (Buzzer)
w High-Speed phys. CAN-Interface
w Reset Button
w up to 70 free General-Purpose-I/Os
w eight additional digital inputs
w eight additional digital outputs
w Operating voltage 5V, current consumption 70 mA typ.
w Mech. Dimensions: 80mm x 100mm

Optional Components

w Option RTC: battery-backed Real Time Clock
w Option ADC: 8-channel 16-bit A/D-Converter (4096mV)
w Option DAC: 2-channel 16-bit D/A-Converter (4096mV)
w Option USB: Full-speed USB2.0 Interface (uses second SCI)
w Option SDF: 2MB (16Mbit) Serial Data Flash

S12compact

4

Package Contents

w Controller Module (with options as ordered)
w TwinPEEKs Monitor program (in the MCU's Flash Memory)
w RS232 Cable (Sub-D9)
w USB Cable (only for option /USB)
w set of header connectors (two 72-pin male headers)
w User Manual (this document)
w Schematic Diagrams
w CD-ROM: contains assembler software, data sheets, CPU12

Reference Manual, code examples, C-Compiler (evaluation
version), etc.

User Manual

5

2. Quick Start
As no one likes to read lengthy manuals, we will summarize the

most important things in the following section. If you need any additio-
nal information, please refer to the more detailed sections of this
manual.

Here is how you can start:

w Please check the board for any damages due to transportation
w Connect the Controller Module via RS232 to a PC. The connec-

tion between S12compact (interface SCI0, connector X2) and
PC is simply made using the flat ribbon cable which is in the
box.

w On the PC, start a Terminal Program. An easy to use Terminal
Program is OC-Console, which is available at no charge from
our Website!

w Select a baudrate of 19200 Bd. Disable all hardware or software
protocols.

w Connect a (stabilized!) power supply, e.g. here:
w Ground on X4 pin 70
w +5V on X4 pin 72
w Check voltage and polarity before making the connection!
w Once powered up, the Monitor program will start, display a

message and await your commands.

We hope you will enjoy working with the S12compact Controller
Module!

S12compact

6

3. Parts Location Diagram

Place Plan - Component Side

User Manual

7

Solder Bridges on the solder side of the PCB

S12compact

8

4. Jumpers and Solder Bridges

Jumpers
There are no jumpers on the S12compact.

Solder Bridges
On the solder side of the module, the following solder bridges can

be found:

BR1: VRH
open external supply of VRH required
closed* VRH connected to VDDA (VCC) on-board

BR2: CANR
open no CAN-Bus termination on-board
closed* on-board CAN-Bus termination active

BR3: BUZZ
open Port pin PT2 freely available
closed* PT2 controls buzzer

BR4: T1IN
open Port pin TXD0 (PS1) freely available
closed* TXD0 connected to RS232 Transceiver IC3

BR5: T2IN
open Port pin PM3 freely available
closed* PM3 connected to RS232 Transceiver IC3

BR6: R1OUT
open Port pin RXD0 (PS0) freely available
closed* RXD0 connected to RS232 Transceiver IC3

* = Factory Default Setting

User Manual

9

BR7: R2OUT
open Port pin PM2 freely available
closed* PM2 connected to RS232 Transceiver IC3

BR8: TPOUT
open* TPOUT and /IRQ not connected
closed TPOUT connected to /IRQ, Real Time Clock IC7

can issue an interrupt

BR9: VREF
open external supply of VREF required
closed* IC10 delivers reference voltage VREF for the

16-bit A/D-Converter IC11 and the 16-Bit
D/A-Converter IC12

BR10: DFLE
open Port pin MISO1 (PH0) freely available
closed* MISO1 connected to buffer IC6B (Serial Data Flash)

BR11: USBR
open* Reset input of USB Transceiver IC15 and

system reset signal /RESET not connected
closed system /RESET also resets USB Transceiver

* = Factory Default Setting

S12compact

10

5. Mechanical Dimensions
The following table summarizes the mechanical dimensions of the

S12compact. The values provide a basis for the design of carrier boards
etc. Please note: Always check all mechanical dimensions using the real
hardware module!

The reference point (0,0) is located at the "south/west" corner of
the PCB. The PCB is orientated vertically, as shown in the Parts
Location Diagram (see above).

All data for holes/drills (B) refer to the center of the hole/drill,
connectors (X) are referenced by pin 1.

100,080,0PCB

3,070,0B3

97,077,0B2

97,03,0B1

23,364,4X8

23,324,4X7

92,337,8X6

3,078,1X5

3,04,5X4

86,436,4X3

93,814,8X2

3,232,2X1B

3,219,5X1A

Y
in mm

X
in mm

User Manual

11

6. Circuit Description

Schematic Diagram
To ensure best visibility of all details, the schematic diagram of the

S12compact controller module is provided as a separate document.

Controller Core, Power Supply
The nominal operating voltage of the MC9S12DP512 is 5V. This

MCU (IC1) has three supply pin pairs: VDDR/VSSR, VDDX/VSSX
and VDDA/VSSA. Internally, the MCU uses a core voltage of only
2.5V. The necessary voltage regulator is already included in the chip, as
well as 5V I/O-buffers for all general-purpose input/output pins. There-
fore, the MCU behaves like a 5V device from an external point of view.
There is just one exception: the signals for oscillator and PLL are based
on the core voltage und must not be driven by 5V levels. High level on
the pin VREGEN is needed to enable the internal voltage regulator.

The three terminal pairs mentioned above must be decoupled
carefully. A ceramic capacitor of at least 100nF should be connected
directly at each pair (C15, C16, C17). It is recommended to add a 10µF
(electrolytic or tantalum) capacitor per node, especially if some MCU
port pins are loaded heavily (C5, C6, C7). Special care must be taken
with VDDA, since this is the reference point (VDDA/2) for the internal
voltage regulator.

The internal core voltage appears at the pin pairs VDD1/VSS1,
VDD2/VSS2 and VDDPLL/VSSPLL, which have to be decoupled as
well (C19, C20, C21). A static current draw from these terminals is not
allowed. This is especially true for VDDPLL, which serves as the
reference point for the external PLL loop filter combination (R3, C3,
C4).

There are two MCU pins (VRH/VRL) to define the upper and
lower voltage limits for the internal analog to digital (ATD) converter.
While VRL is grounded, VRH is usually tied to VDDA. C18 is used for
decoupling. VRH can be supplied externally after opening the solder

S12compact

12

bridge BR1. This can be useful if the main supply is not in the desired
tolerance band or if the ATD should work with a reference value lower
than 5V. VRH must not exceed VDDA, regardless of the selected
supply mode.

The TEST pin is used for factory testing only, in an application
circuit this pin always has to be grounded.

Reset Generation
/RESET is the MCU's active low bidirectional reset pin. As an

input it initializes the MCU asynchronously to a known start-up state.
As an open-drain output it indicates that a system reset (internal to
MCU) has been triggered. The HCS12 MCUs already contain on-chip
reset generation circuitry including power-on reset, COP watchdog
timer and clock monitor. It is, however, necessary to add an external
Low Voltage Inhibit (LVI) circuit, also referred to as "reset controller".
The task of this reset controller is to issue a stable reset condition if the
power supply falls below the level required for proper MCU operation.

To prevent collisions with the bidirectional /RESET pin of the
MCU, the LVI circuit IC2 has an open-drain output. In the inactive state
it is pulled-up high by the resistor R6. The detector treshold of IC2 is
typically 4.6V, which is slightly higher than the required minimum
MCU operating voltage of 4.5V.

Furthermore, IC2 is capable of stretching the reset output to filter
out short pulses on the power supply effectively. The duration of that
delay can be selected using the capacitor C14. A value of 100nF results
in a delay of approx. 50..80ms.

It is important to note, that this delay will only be applied during a
power cycle event. IC2 will not stretch pulses coming from the MCU's
internal reset sources. This is essentially important, since otherwise the
MCU would not be able to detect the source of a reset. This would
finally lead to a wrong reset vector fetch and could result in a system
software crash. Please be aware, that also a capacitor on the reset line
would cause the same fatal effect, therefore external circuitry connected

User Manual

13

to the /RESET pin of a HC12/HCS12 MCU should never include a
large capacitance!

Clock Generation and PLL
The on-chip oscillator of the MC9S12DP512 can generate the

primary clock (OSCCLK) using a quartz crystal (Q1) connected
between the EXTAL and XTAL pins. The allowed frequency range is
0.5 to 16MHz. As usual, two load capacitors are part of the oscillator
circuit (C1, C2). However, this circuit is modified compared to the
standard Pierce oscillator that was used for the HC11 or most HC12
derivatives.

The MC9S12DP512 uses a Colpitts oscillator with translated
ground scheme. The main advantage is a very low current consumption,
though the component selection is more critical. The S12compact
circuit uses a 16MHz automotive quartz from NDK together with two
load capacitors of only 3.9pF. Furthermore, special care was taken for
the PCB design to introduce as little stray capacitance as possible in
respect to XTAL and EXTAL.

With an OSCCLK of 16MHz, the internal bus speed (ECLK)
becomes 8MHz by default. To realize higher bus clock rates, the PLL
has to be engaged. The MC9S12DP512 can be operated with a bus
speed of up to 25MHz, though most designs use 24MHz because this
value is a better basis to generate a wide range of SCI baud rates.

A passive external loop filter must be placed on the XFC pin. The
filter (R3, C3, C4) is a second-order, low-pass filter to eliminate the
VCO input ripple. The value of the external filter network and the
reference frequency determines the speed of the corrections and the
stability of the PLL. If PLL usage is not required, the XFC pin must be
tied to VDDPLL.

The choice of filter component values is always a compromise over
lock time and stability of the loop. 5 to 10kHz loop bandwidth and a
damping factor of 0.9 are a good starting point for the calculations.
With a quartz frequency of 16MHz and a desired bus clock of 24MHz, a
possible choice is R3 = 4.7k and C3 = 22nF. C4 should be

S12compact

14

approximately (1/20..1/10) x C3, e.g. 2.2nF in our case. These values
are suitable for a reference frequency of 1MHz (Note: to be defined in
example file S12_CRG.H). The according reference divider register
value is REFDV=15 and the synthesizer register setting becomes
SYNR=23. Please refer to the chapter "XFC Component Selection" in
the MC9S12DP256B Device User Guide for detailed description of
how to calculate values for other system configurations.

The following source listing shows the steps required to initialize
the PLL:

//===
// File: S12_CRG.C - V1.00
//===

//-- Includes ---

#include <mc9s12dp512.h>
#include "s12_crg.h"

//-- Code ---

void initPLL(void) {

 CLKSEL &= ~BM_PLLSEL; // make sure PLL is *not* in use
 PLLCTL |= BM_PLLON+BM_AUTO; // enable PLL module, Auto Mode
 REFDV = S12_REFDV; // set up Reference Divider
 SYNR = S12_SYNR; // set up Synthesizer Multiplier
 // the following dummy write has no effect except consuming some cycles,
 // this is a workaround for erratum MUCTS00174 (mask set 0K36N only)
 // CRGFLG = 0;
 while((CRGFLG & BM_LOCK) == 0) ; // wait until PLL is locked
 CLKSEL |= BM_PLLSEL; // switch over to PLL clock
 }

//===

An alternative, external clock source can be used for the
MC9S12DP512 if the internal oscillator and PLL are disabled by apply-
ing a low level to the /XCLKS pin during reset. Since this option is not
used on the S12compact Controller Module, R5 is used to pull /XCLKS
high. Please note, that other HCS12 derivatives will have different
features associated with the /XCLKS pin.

Operating Modes, BDM Support
Three pins of the HCS12 are used to select the MCU operating

mode: MODA, MODB and BKGD (=MODC). While MODA and
MODB are pulled low (R1, R2) to select Single Chip Mode, BKGD is
pulled high (R7) by default. As a consequence, the MCU will start in

User Manual

15

Normal Single Chip Mode, which is the most common operating mode
for application code running on the HCS12.

The HCS12 operating mode used for download and debugging is
called Background Debug Mode (BDM). BDM is active immediately
out of reset if the mode pins MODA/MODB/BKGD are configured for
Special Single Chip Mode. This is done by pulling the BKGD pin low
during reset, while MODA and MODB are pulled-down as well.

Because only the BKGD level is different for the two modes, it is
quite easy to change over. However, there is no need to switch the
BKGD line manually via a jumper or solder bridge because this can be
done by a BDM-Pod (such as ComPOD12) attached to connector X1A.
A BDM-Pod is required for BDM-based download and/or debugging
anyway, so it can handle this task automatically, usually controlled by a
PC-based debugging program.

The 6-pin header X1A uses the suggested standard BDM12
connector layout. Connector X1B carries additional MCU signals,
which are normally not needed for BDM12 debugging. Some
debuggers, however, provide additional features, which rely on the
presence of these supplemental signals.

Integrated A/D-Converter
The MC9S12DP512 contains two 10-bit Analog-to-Digital Conver-

ter modules. Each module (ATD0, ATD1) provides eight multiplexed
input channels.

VRH is the upper reference voltage for all A/D-channels. On the
S12compact, VRH is connected to VDDA (5V) through solder bridge
BR1.

After opening BR1, it is possible to use an external reference volta-
ge, which has to be applied to X5/46. For this purpose, the precision
voltage reference IC10 could be used (if present). IC10 delivers 4.096V
at X5/71.

The following example program shows the initialization sequence
for the A/D-converter module ATD0 and a single-channel conversion

S12compact

16

routine. The source file S12_ATD.C also contains some additional
functions for the integrated ATD module.

//===
// File: S12_ATD.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_atd.h"

//-- Code ---

// Func: Initialize ATD module
// Args: -
// Retn: -
//
void initATD0(void) {

 // enable ATD module
 ATD0CTL2 = BM_ADPU;
 // 10 bit resolution, clock divider=12 (allows ECLK=6..24MHz)
 // 2nd sample time = 2 ATD clocks
 ATD0CTL4 = BM_PRS2 | BM_PRS0;
 }

//---

// Func: Perform single channel ATD conversion
// Args: channel = 0..7
// Retn: unsigned, left justified 10 bit result
//
UINT16 getATD0(UINT8 channel) {

 // select one conversion per sequence
 ATD0CTL3 = BM_S1C;
 // right justified unsigned data mode
 // perform single sequence, one out of 8 channels
 ATD0CTL5 = BM_DJM | (channel & 0x07);
 // wait until Sequence Complete Flag set
 // CAUTION: no loop time limit implemented!
 while((ATD0STAT0 & BM_SCF) == 0) ;
 // read result register
 return ATD0DR0;
 }

//---

User Manual

17

Integrated EEPROM
The internal EEPROM module of the MC9S12DP512 contains

4KB of memory. It consists of 1024 sectors with 4 bytes (32 bits) per
sector. For erasure, any single sector can be selected. Programming is
done by words (2 bytes). Read accesses can be made to any word or
byte.

After reset, the EEPROM module of the MC9S12DP512 is mapped
to address 0x0000. In the lower 1KB area (0x0000..0x03FF), control
registers take precedence over EEPROM. In order to use the full
EEPROM space, the EEPROM module can be relocated (see INITEE
control register).

In the following example, the EEPROM module is left at it's
default position. The initialization sequence just takes care for setting
up the EEPROM Clock Divider according to the quartz crystal frequen-
cy. The write function wrSectEETS() copies two words (4 bytes) from
source address src to EEPROM address dest. dest must be identical to
an EEPROM sector border (aligned 32 bit value). If the sector is not
erased (erased state = 0xFFFFFFFF), the routine will perform a sector
erase before writing to the sector.

The access functions readItemEETS() and writeItemEETS()
provide a more abstract way to deal with EEPROM contents. Instead of
using certain addresses, which must be part of the EEPROM address
range, these routines use abstract "item numbers", with each item consi-
sting of a variable amount of data (1 to 4 bytes).

S12compact

18

//===
// File: S12_EETS.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_eets.h"

//-- Code ---

void initEETS(void) {

 ECLKDIV = EETS_ECLKDIV; // set EEPROM Clock Divider Register
 }

//---

INT8 wrSectEETS(UINT16 *dest, UINT16 *src) {

 // check addr: must be aligned 32 bit
 if((UINT16)dest & 0x0003) return -1;
 // check if ECLKDIV was written
 if((ECLKDIV & BM_EDIVLD) == 0) return -2;
 // make sure error flags are reset
 ESTAT = BM_PVIOL | BM_ACCERR;
 // check if command buffer is ready
 if((ESTAT & BM_CBEIF) == 0) return -3;
 // check if sector is erased
 if((*dest != 0xffff) || (*(dest+1) != 0xffff)) {
 // no, go erase sector
 *dest = *src;
 ECMD = EETS_CMD_SERASE;
 ESTAT = BM_CBEIF;
 if(ESTAT & (BM_PVIOL | BM_ACCERR)) return -4;
 while((ESTAT & BM_CBEIF) == 0) ;
 }
 // program 1st word
 *dest = *src;
 ECMD = EETS_CMD_PROGRAM;
 ESTAT = BM_CBEIF;
 if(ESTAT & (BM_PVIOL | BM_ACCERR)) return -5;
 while((ESTAT & BM_CBEIF) == 0) ;
 // program 2nd word
 *(dest+1) = *(src+1);
 ECMD = EETS_CMD_PROGRAM;
 ESTAT = BM_CBEIF;
 if(ESTAT & (BM_PVIOL | BM_ACCERR)) return -6;
 while((ESTAT & BM_CCIF) == 0) ;
 return 0;
 }

//---

INT8 writeItemEETS(UINT16 item_no, void *item) {

 if(item_no >= EETS_MAX_SECTOR) return -7;
 item_no = EETS_START + (item_no << 2);
 return wrSectEETS((UINT16 *)item_no, (UINT16 *)item);
 }

//---

INT8 readItemEETS(UINT16 item_no, void *item) {

 if(item_no >= EETS_MAX_SECTOR) return -7;
 item_no = EETS_START + (item_no << 2);
 *((UINT16 *)item) = *((UINT16 *)item_no);
 *(((UINT16 *)item)+1) = *(((UINT16 *)item_no)+1);
 return 0;
 }

//===

User Manual

19

Indicator-LED
The logic level of port pin PE7 is latched at the rising edge of reset

and provides the control signal /XCLKS. This signal is used to select
one of two possible clock configurations for the MC9S12DP512. High
level activates the integrated Colpitts oscillator. After reset, PE7 can be
used as a general-purpose I/O-pin. On the S12compact, this signal is
used to control the indicator LED D2, driven by buffer IC6C.

To turn the LED on or off, some simple macros can be used, as
shown in the following C header file:

//===
// File: S12CO_LED.H - V1.00
//===

#ifndef __S12CO_LED_H
#define __S12CO_LED_H

//-- Macros ---

#define initLED() PORTE |= 0x80; DDRE |= 0x80
#define offLED() PORTE |= 0x80
#define onLED() PORTE &= ~0x80
#define toggleLED() PORTE ^= 0x80

//-- Function Prototypes --

/* module contains no code */

#endif //__S12CO_LED_H ==

Buzzer
The sound transducer (buzzer) SP1 is driven by buffer IC6D and

controlled by the MCU's port pin PT2, provided the solder bridge BR3
is closed.

PT2 is connected with one of the eight timer channels of the MCU.
Frequency generation is realized using the Output-Compare function of
the timer system.

The following example demonstrates, how Output-Compare inter-
rupts can be used to generate oscillations in the audible range:

S12compact

20

//===
// File: ACPRD_FREQOUT.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_ect.h"
#include "s12_crg.h" // contains S12_ECLK value
#include "acprd_freqout.h"

//-- Static Vars --

UINT16 freqout_tticks;

//-- Code ---

void initFreqOut(void) {

 // make sure timer is enabled
 TSCR1 |= BM_TEN;
 // prescaler = 2**4 = 16
 TSCR2 = 0x04;
 // select Output Compare function for channel 2
 TIOS |= BM_2;
 DDRT |= BM_2;
 // enable Interrupt for channel 2
 TIE |= BM_2;
 // timer disconnected from PT2 pin
 TCTL2 &= ~(BM_OM2 | BM_OL2);
 }

//---

// period is in µs
//
void setFreqOut(UINT16 period) {

 UINT16 tticks;

 tticks = period * (S12_ECLK / 2000000L);
 tticks /= TIMER_TCNT_PRE;

 if(period == 0) {
 // disconnect PT2 pin
 TCTL2 &= ~(BM_OM2 | BM_OL2);
 }
 else {
 // connect PT2 pin
 TCTL2 |= BM_OL2;
 }
 freqout_tticks = tticks;
 }

//---

// OC2 toggles buzzer
//
#ifdef METROWERKS_C
interrupt
#endif
#ifdef IMAGECRAFT_C
#pragma interrupt_handler isrOC2
#endif
void isrOC2(void) {

 TC2 += freqout_tticks;
 TFLG1 = BM_2; // clear Intr flag
 }

//===

User Manual

21

RS232 Interface
The MC9S12DP512 provides two asynchronous serial interfaces

(SCI0, SCI1). Each interface has one receive line and one transmit line
(RXDx, TXDx). Handshake lines are not provided by the SCI module,
though they can be added by using general purpose I/O port lines if
required.

IC3 is an industry standard RS232 line transceiver circuit. It is
connected to SCI0, which is the MCU's first asynchronous serial
communications channel. In addition to the receive and transmit lines
(RXD0, TXD0), two general purpose I/Os (PM2, PM3) can be used as
hardware handshake lines. If the RS232 transceiver IC3 is not needed,
the dedicated MCU pins can be used freely after opening the four solder
bridges BR4..BR7.

To connect the S12compact to a PC, a 10-wire flat ribbon cable can
be used. The cable must have a 10-pin female header connector at the
S12compact side (X2) and a female Sub-D9 connector at the PC side.

The code example shows how to use SCI0 in polling mode:
//===
// File: S12_SCI.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <hcs12dp256.h>
#include "s12_sci.h"

//-- Code ---

void initSCI0(UINT16 bauddiv) {

 SCI0BD = bauddiv & 0x1fff; // baudrate divider has 13 bits
 SCI0CR1 = 0; // mode = 8N1
 SCI0CR2 = BM_TE+BM_RE; // Transmitter + Receiver enable
 }

//---

UINT8 getSCI0(void) {

 while((SCI0SR1 & BM_RDRF) == 0) ;
 return SCI0DRL;
 }

//---

void putSCI0(UINT8 c) {

 while((SCI0SR1 & BM_TDRE) == 0) ;
 SCI0DRL = c;
 }

//---

S12compact

22

IF-Module Connection
SCI1 can be used in two different ways on the S12compact. If the

USB option is equipped, SCI1 is used to control the USB-Transceiver
IC15 (refer to section USB Interface for details). Otherwise, SCI1 can
be used as an universal TTL-RS232 (without level shifter) to control an
external IF-Module.

IF-Modules are serial interface modules, having a standardized
connector definition. They are available for different physical interface
types, such as RS232, RS485, current-loop or LIN. IF-Modules can be
connected to X3 using a 10-wire flat ribbon cable.

The I/O signals PM4..7 are associated to SCI1 as handshake lines
on the S12compact. If there is no IF-Module on X3 and also the USB
option is not present, these signals (including RXD1 and TXD1) can be
used as general-purpose I/Os. They are accessible at connector X4 and
X5, respectively.

USB Interface
IC15 (FT232BM) is an USB-UART. This chip provides a transpa-

rent conversion from RS232 to USB and back. The communication
protocol is implemented according to the current USB specification 2.0.
The FT232BM belongs to the USB "Full-Speed" device class.

On the S12compact, the microcontroller can send data over SCI1 to
the USB-UART. Thereupon, all data is transferred to he USB-bus and
can be accessed using a virtual COM-Port driver on the Host-PC. The
required driver software is provided by FTDI, the manufacturer of the
FT232BM (see http://www.ftdichip.com). The drivers are free of
charge. Currently, there are driver versions for Windows-PCs (98 to
XP), Apple computers and Linux systems. On the S12compact supple-
ment CD, drivers (for Windows platform) are provided as well, though
there may exist newer versions on the website.

To transfer data between USB-UART and microcontroller, only the
signals TXD and RXD (MCU pins TXD1 and RXD1) are required.
Optionally, a CTS/RTS hardware handshake protocol can be

User Manual

23

implemented. The MCU can read the /RTS output using port pin PM6,
while PM7 controls the /CTS input of the USB-UART.

Transmit- and receive-activities can be displayed using two LEDs.
Their anodes must be wired to VCC (5V), while the cathodes have to be
connected to /RXLED and /TXLED (X4/67+68), respectively.

/PWREN is set by IC15 according to the enumeration status of the
USB device. This signal can be detected by MCU port pin PM4. The
control signal /SLEEP is low if IC15 is in Suspend-Mode, PM5 is used
to read this signal.

BR11 must be closed if a system reset should also reset the
USB-UART, which is normally not required. The USB-UART has an
independent power-on reset circuit, so, normally it does not need an
external reset source. If BR11 is closed, any system reset will temora-
rily remove the USB device from the bus "logically". When the reset
condition has ended, the device needs to be re-enumerated by the
USB-Host.

The serial EEPROM IC16 can hold configuration data for the
USB-UART. If IC16 is erased (default delivery state), the USB-UART
uses standard descriptors to answer descriptor requests from the host.
User descriptors (VID, PID, strings, serial numbers etc.) can be
downloaded to EEPROM using a PC-based utility program (provided
by FTDI). The programming can be done in-circuit via USB.

Please note: If the USB-Option is equipped, the IF-Module connec-
tion X3 is not available.

S12compact

24

SPI Subsystem
The MC9S12DP512 provides three independent SPI-Ports. On the

S12compact, port SPI0 is used to control the peripheral components
RTC, ADC, DAC, PARIN and PAROUT. Port SPI1 is used to commu-
nicate with the Serial Data Flash; SPI2 is not in use.

SPI0 consists of four individual signals: MISO, MOSI, SCK and
/SS (MCU port pins PS4 to PS7). The slave select signal /SS is not in
use on the S12compact, though it can be accessed on the side header
connectors.

The SPI chip select signals are derived from MCU port pins
PH[4..6]. The decoder chip IC4 activates one of it's eight low-active
outputs depending on the Port H pattern. This provides an economical
way to provide up to eight chip selects with a small number of MCU
ressources. The table below shows the usage of SPI chip selects on the
S12compact:

no chip select activex111xxxx/SPICS7

freely available (X4/20)x110xxxx/SPICS6

Parallel Outx101xxxx/SPICS5

Parallel In Latchx100xxxx/SPICS4

Parallel In Shiftx011xxxx/SPICS3

A/D-Converterx010xxxx/SPICS2

D/A-Converterx001xxxx/SPICS1

Real Time Clockx000xxxx/SPICS0

UsagePort HChip Select

The following listing demonstrates some basic functions (initializa-
tion, 8-bit data transfer) for the SPI-Port SPI0:

User Manual

25

//===
// File: S12_SPI.C - V1.01
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_spi.h"

//-- Code ---

void initSPI0(UINT8 bauddiv, UINT8 cpol, UINT8 cpha) {

 DDRS |= 0xe0; // SS,SCK,MOSI Output
 SPI0BR = bauddiv; // set SPI Rate
 // enable SPI, Master Mode, select clock polarity/phase
 SPI0CR1 = BM_SPE | BM_MSTR | (cpol ? BM_CPOL : 0) | (cpha ? BM_CPHA : 0);
 SPI0CR2 = 0; // as default
 }

//---

UINT8 xferSPI0(UINT8 abyte) {

 while((SPI0SR & BM_SPTEF) == 0) ; // wait for transmitter available
 SPI0DR = abyte; // start transfer (write data)
 while((SPI0SR & BM_SPIF) == 0) ; // wait until transfer finished
 return(SPI0DR); // read back data received
 }

//===

Extra Ports PARIN and PAROUT
While the MC9S12DP512 provides a large number of general-pur-

pose I/O-pins, it may be desireable for some applications to keep a
number of ports unused. This is especially the case if the external bus
interface is intended to be used.

A preferred way to provide additional input or output ports consists
of using one of the Serial Peripheral Interface (SPI) modules of the
MC9S12DP512. It is quite easy to create eight additional binary outputs
by adding a shift register like IC9. In addition to the SPI signals MOSI
and SCK only a chip select signal (/SPICS5) is needed to operate IC9.
This shift register has an asynchronous reset input for both the shift
register and the output latch, so all output lines PO0..PO7 will drive
L-level out of reset automatically.

The following listing shows an example for parallel output:

S12compact

26

//---

void putSPIPO(UINT8 abyte) {

 // set up SPI mode
 SPI0CR1 = BM_SPE | BM_MSTR; // CPOL=0 CPHA=0
 // send data
 PTH = S12CO_SPICS5; // enable /CS5
 xferSPI0(abyte);
 PTH = S12CO_SPICSH; // disable /CS5
 }

//---

Using the same SPI port, IC8 provides eight additional input pins.
Two chip selects (/SPICS3 and /SPICS4) are needed to latch the input
information coming from PI0..PI7 and to shift out data via MISO
respectively. IC6A is needed to decouple the push/pull-output QH of
IC8 from MISO, in order to allow multiple slaves on the same SPI port.

The following listing shows an example for parallel input:

//---

UINT8 getSPIPI(void) {

 UINT8 abyte;

 // set up SPI mode
 SPI0CR1 = BM_SPE | BM_MSTR; // CPOL=0 CPHA=0
 // latch input data
 PTH = S12CO_SPICS4;
 PTH = S12CO_SPICSH;
 // serialize latched data
 PTH = S12CO_SPICS3;
 abyte = xferSPI0(0);
 PTH = S12CO_SPICSH;
 return abyte;
 }

//---

Real Time Clock (RTC)
The Real Time Clock (RTC) IC7 provides an independent timing

reference including calendar information. Under normal operating
conditions, it is supplied by VCC (via D3). In case of a power-loss, the
lithium cell BT1 delivers a backup supply in order to avoid data corrup-
tion. The installed battery type (CR2032) is designed for a life time of
at least five years.

The RTC is controlled via SPI-port SPI0. This includes the signals
MISO, MOSI and SCK (port pins PS4/5/6). The chip select signal
/SPICS0 is provided by IC4 (see above). The read/write control is done
by PH7.

User Manual

27

The following listing shows some basic input/output routines for
the RTC. They are based upon the SPI driver functions which are
shown above. For more complex functions, such as set date/time, please
refer to the software examples contained on the product CD.

For further instructions how to program the RTC, please refer to
the RTC4553 Application Manual.

//---

// Func: getRTC()
// Args: regno[0..3] is RTC register number
// Retn: [0..3] RTC data (register contents)
// Note: there is no need to range check the regno argument since the
// RTC will ignore any additional bits anyway
//
UINT8 getRTC(UINT8 regno) {

 UINT8 result;

 // set up SPI mode: enable, master, CPOL=1, CPHA=1, LSB first
 SPI0CR1 = BM_SPE | BM_MSTR | BM_CPOL | BM_CPHA | BM_LSBFE;
 // transfer data
 PTH = S12CO_SPICS0_RD; // enable /CS0 (reading)
 xferSPI0(regno); // send register number to RTC
 result = xferSPI0(0) >> 4; // receive data from RTC
 PTH = S12CO_SPICSH; // disable all /CSx
 return result;
 }

//---

// Func: putRTC()
// Args: regno[0..3] is RTC register number
// data[0..3] is RTC data (for that register)
// Retn: -
//
void putRTC(UINT8 regno, UINT8 data) {

 // set up SPI mode: enable, master, CPOL=1, CPHA=1, LSB first
 SPI0CR1 = BM_SPE | BM_MSTR | BM_CPOL | BM_CPHA | BM_LSBFE;
 // transfer data
 PTH = S12CO_SPICS0_WR; // enable /CS0 (writing)
 xferSPI0((data << 4) | (regno & 0x0f));
 PTH = S12CO_SPICSH; // disable all /CSx
 }

//---

On the S12compact, the RTC (including BT1) is an optional
component (not included in the standard version).

S12compact

28

A/D-Converter (ADC)
The S12compact can be equipped with a high-resolution A/D-Con-

verter (ADC). While the on-chip ATD modules of the HCS12 provide
sufficient resolution (10-bit) for a wide range of industrial applications,
the external ADC system on the S12compact provides enhanced
accuracy, which is suitable for measuring devices and data loggers.

The ADS8344 (IC11) from Burr Brown is an 8-channel 16-bit
ADC with serial interface and a conversion rate of up to 100ksps. It is
connected to the SPI-port SPI0 of the MCU. /SPICS2 is the chip select
signal for the ADC (delivered by IC4).

IC10 is a precision voltage reference, delivering 4.096V for the
ADC and the DAC on the S12compact. This reference voltage determi-
nes the maximum limit for the analog inputs AIN0..AIN7. The lower
limit is ground (0V). After opening solder bridge BR9, an external
reference voltage can be used instead of IC10 (note: influence on DAC
IC12). The analog inputs AIN0 to AIN7 as well as the analog supply
voltages (VCCA, VREF, GNDA) are available at connector X4.

The following software example for the ADS8344 uses the basic
SPI functions (shown above).

//---
// Note: CPHA=0, CPOL=0 required
// clock rate max. 2MHz
// conversion takes max. 8µs
//
UINT16 getADS8344(UINT8 channel) {

 volatile UINT8 n;
 UINT16 adcresult;

 // set up SPI mode
 SPI0CR1 = BM_SPE | BM_MSTR; // CPOL=0 CPHA=0
 // send conversion command
 PTH = S12CO_SPICS2; // enable /CS2
 xferSPI0((channel << 4) | 0x86); // single ended, internal clock mode
 PTH = S12CO_SPICSH; // disable /CS2
 // wait 8µs
 for(n=0; n<100; n++) ;
 // get conversion result
 PTH = S12CO_SPICS2; // enable /CS2
 adcresult = xferSPI0(0) << 8; // get bits 15..9
 adcresult += xferSPI0(0); // get bits 8..1
 adcresult <<= 1;
 if(xferSPI0(0) & 0x80) adcresult++; // get bit 0
 PTH = S12CO_SPICSH; // disable /CS2
 return adcresult;
 }

//---

User Manual

29

On the S12compact, the ADC is an optional component (not inclu-
ded in the standard version).

D/A-Converter (DAC)
The 16-bit D/A-Converter (IC12) is a DAC8532 from Burr Brown.

This device contains two output channels (VOUTA, VOUTB), which
can be set either simultaneously or individually.

The reference voltage (4.096V) is deliverd by IC10 (see ADC
description).

The load resistance at the output(s) should be at least 2kOhm. At
power-up, the output registers of the DAC are reset, thus delivering 0V.

The DAC is controlled via SPI0. /SPICS1 serves as chip select
signal for the DAC.

The analog outputs VOUTA and VOUTB are available at connec-
tor X4.

The following listing shows a software example for the DAC:

//---

// Note: CPHA=0, CPOL=0 required
//
void putDAC8532(UINT8 channel, UINT16 value) {

 // set up SPI mode
 SPI0CR1 = BM_SPE | BM_MSTR | BM_CPHA; // CPOL=0 CPHA=1
 // send command
 PTH = S12CO_SPICS1; // enable /CS1
 if((channel & 1) == 0)
 xferSPI0(0x10); // load & set DACA
 else
 xferSPI0(0x24); // load & set DACB
 // send data
 xferSPI0(value >> 8); // send bits 15..8
 xferSPI0(value); // send bits 7..0
 PTH = S12CO_SPICSH; // disable /CS1
 }

//---

On the S12compact, the DAC is an optional component (not inclu-
ded in the standard version).

S12compact

30

Serial Data Flash (SDF)
The Serial Data Flash (SDF) on the S12compact allows to store a

large amount (up to 2MB / 16Mbit) of data, arriving sequentially at high
rates. This is often the case for data logger applications.

Normally, a disadvantage of Flash memory is the lack of a
randomly writeable buffer space. As a consequence, an additional RAM
area is required for temporary storage. To avoid the need for extra
RAM resources, Atmel provides two 528 byte buffers in their Serial
Data Flash devices. This allows to fill one buffer via SPI, while the
contents of the other buffer is programmed into a Flash sector. Using
this method, a continous throughput of up to 35KB/s (writing) can be
reached.

The Serial Data Flash (IC14) is connected to SPI1, thus, being
independent from RTC, ADC, DAC etc., which are using SPI0. The
SPI1 signals MISO1, MOSI1, SCK1 and the chip select signal /SS1 are
provided by the MCU's port pins PH0..PH3.

Note: To use this assignment, bit 5 in the Module Routing Register
(MODRR) of the MC9S12DP512 must be set. Otherwise (reset default)
SPI1 is associated with port pins PP0..PP3.

Programming voltage and timing is generated on-chip by IC14. The
supply voltage of 3.3V is provided by a low-dropout voltage regulator
(IC13). The inputs of the Serial Data Flash device are 5V-tolerant, the
output SO is connected to the 5V-based MISO1 signal through a level
shifter (IC6B).

On the S12compact, the SDF is an optional component (not inclu-
ded in the standard version). If IC14 is not equipped, R17 will provide a
defined input level for IC6B. By opening solder bridge BR10, the
output of IC6B can be decoupled from MISO1.

User Manual

31

IIC-Bus
The port pins PJ6 and PJ7 grant access to the Inter-IC-Bus module

(IIC/I2C/I2C) of the MC9S12DP512. Since the IIC-Bus is implemented
as a hardware module, an IIC software emulation is obsolete.

For the two IIC-Bus signals (SDA, SCL), pull-up resistors are
required. They can be soldered in directly on the S12compact PCB
(R10, R11) or they can be added externally.

The following listing shows a simplified Master Mode implementa-
tion without using interrupts:

//===
// File: S12_IIC.C - V1.00
// Func: Simplified I2C (Inter-IC Bus) Master Mode implementation
// using the IIC hardware module of the HCS12
// Rem.: For a real-world implementation, an interrupt-driven scheme should
// be preferred. See AppNote AN2318 and accompanying software!
// Hard: External pull-ups on SDA and SCL required!
// Value should be 1k..5k depending on cap. bus load
// Note: Adjust IBFD value if ECLK is not 8MHz!
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_iic.h"

//-- Code ---

// Func: Initialize IIC module
// Args: -
// Retn: -
//
void initIIC(void) {

 IBFD = 0x18; // 100kHz IIC clock at 8MHz ECLK
// IBFD = 0x1f; // 100kHz IIC clock at 24MHz ECLK
 IBCR = BM_IBEN; // enable IIC module, still slave
 IBSR = BM_IBIF | BM_IBAL; // clear pending flags (just in case...)
 }

//---

// Func: Issue IIC Start Condition
// Args: -
// Retn: -
//
void startIIC(void) {

 while((IBSR & BM_IBB) != 0) // wait if bus busy
 ; // CAUTION! no loop time limit implemented
 IBCR = BM_IBEN | BM_MSSL | BM_TXRX; // transmit mode, master (issue START cond.)
 while((IBSR & BM_IBB) == 0) // wait for busy state
 ; // CAUTION! no loop time limit implemented
 }

//---

S12compact

32

// Func: Issue IIC Restart Condition
// Args: -
// Retn: -
//
void restartIIC(void) {

 IBCR |= BM_RSTA; // issue RESTART condition
 }

//---

// Func: Issue IIC Stop Condition
// Args: -
// Retn: -
//
void stopIIC(void) {

 IBCR = BM_IBEN; // back to slave mode (issue STOP cond.)
 }

//---

// Func: Transmit byte via IIC
// Args: bval: data byte to transmit
// Retn: if stat==0 then IIC_ACK else IIC_NOACK
//
UINT8 sendIIC(UINT8 bval) {

 UINT8 stat;

// IBCR = BM_IBEN | BM_MSSL | BM_TXRX; // still transmit mode, still master
 IBDR = bval; // transmit byte
 while((IBSR & BM_IBIF) == 0) // wait for transfer done
 ; // CAUTION! no loop time limit implemented
 stat = IBSR & BM_RXAK; // mask ACK status (0==ACK)
 IBSR = BM_IBIF; // clear IB Intr Flag
 return stat;
 }

//---

// Func: Receive byte from IIC
// Args: ack = IIC_ACK / IIC_NOACK
// Retn: byte received
//
UINT8 receiveIIC(UINT8 ack) {

 UINT8 bval;

 IBCR = BM_IBEN | BM_MSSL; // receive mode (still master)
 if(ack != IIC_ACK) IBCR |= BM_TXAK; // set TXAK to respond with NOACK
 bval = IBDR; // dummy read initiates transfer
 while((IBSR & BM_IBIF) == 0) // wait for transfer done
 ; // CAUTION! no loop time limit implemented
 IBSR = BM_IBIF; // clear IB Intr Flag
 IBCR = BM_IBEN | BM_MSSL | BM_TXRX; // back to transmit mode, still master
 bval = IBDR; // get received byte
 return bval;
 }

//===

The IIC-Bus signals are acessible at X4/65+66.

User Manual

33

CAN Interface
The MC9S12DP512 contains five independent CAN-Modules,

designated as CAN0 to CAN4.

CAN0 communicates over MCU pins PM0 and PM1 with IC5,
which serves as the CAN bus physical interface. CAN bus signals
CANH und CANL can be accessed at X4/63 and X4/64.

R9 determines the slope control setting for the CAN bus signals. To
operate IC5 in High Speed mode, R9 must be shorted (refer to the
PCA82C251 data sheet for details).

R8 is a termination resistor, required if the S12compact is the last
node in a CAN bus chain. BR2 should be closed in this case, otherwise
opened.

For CAN1 to CAN4, no physical drivers are provided on the
S12compact. They can be added externally, if required.

TTL signals für CAN1 to CAN3 are available at Port M. Please
refer to the schematic diagram to see if other functions (which share the
same pins) are needed in your application. TTL signals for CAN4 are
available through port pins PJ6 and PJ7. However, in this case a
conflict with the IIC-Bus will occur, since both functions share the
same two pins. If IIC and CAN4 have to be used at the same time,
CAN4 can be re-routed to port pins PM4/5 or PM6/7 by setting the
re-routing control register MODRR accordingly (which, in return, may
have an influence on using an IF-Module or the USB interface option).

The following listing demonstrates a number of basic functions for
CAN communication:

S12compact

34

//===
// File: S12_CAN.C - V1.01
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_can.h"

//-- Defines --

//-- Variables --

//-- Code ---

// Func: initialize CAN
// Args: -
// Retn: -
// Note: -
//
void initCAN0(UINT16 idar, UINT16 idmr) {

 CAN0CTL0 = BM_INITRQ; // request Init Mode
 while((CAN0CTL1 & BM_INITAK) == 0) ;// wait until Init Mode is established

 // set CAN enable bit, deactivate listen-only mode and
 // use Oscillator Clock (16MHz) as clock source
 CAN0CTL1 = BM_CANE;

 // set up timing parameters for 125kbps bus speed and sample
 // point at 87.5% (complying with CANopen recommendations):
 // fOSC = 16MHz; prescaler = 8 -> 1tq = (16MHz / 8)^-1 = 0.5µs
 // tBIT = tSYNCSEG + tSEG1 + tSEG2 = 1tq + 13tq + 2tq = 16tq = 8µs
 // fBUS = tBIT^-1 = 125kbps
 CAN0BTR0 = 0x07; // sync jump width = 1tq, br prescaler = 8
 CAN0BTR1 = 0x1c; // one sample point, tSEG2 = 2tq, tSEG1 = 13tq

 // we are going to use four 16-bit acceptance filters:
 CAN0IDAC = 0x10;

 // set up acceptance filter and mask register #1:
 // --
 // 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0
 // ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 | ID2 ID1 ID0 RTR IDE xxx xxx xxx
 // --
 // we are going to detect data frames with standard identifier (11 bits)
 // only, so bits RTR (bit4) and IDE (bit3) have to be clear
 CAN0IDAR0 = idar >> 8; // top 8 of 11 bits
 CAN0IDAR1 = idar & 0xe0; // remaining 3 of 11 bits
 CAN0IDMR0 = idmr >> 8; // top 8 of 13 bits
 CAN0IDMR1 = (idmr & 0xe0) | 0x07; // remaining 3 bits + RTR + IDE

 // set up acceptance filter and mask register #2,3,4 just as #1
 CAN0IDAR6 = CAN0IDAR4 = CAN0IDAR2 = CAN0IDAR0;
 CAN0IDAR7 = CAN0IDAR5 = CAN0IDAR3 = CAN0IDAR1;
 CAN0IDMR6 = CAN0IDMR4 = CAN0IDMR2 = CAN0IDMR0;
 CAN0IDMR7 = CAN0IDMR5 = CAN0IDMR3 = CAN0IDMR1;

 CAN0CTL0 &= ~BM_INITRQ; // exit Init Mode
 while((CAN0CTL1 & BM_INITAK) != 0) ;// wait until Normal Mode is established
 CAN0TBSEL = BM_TX0; // use (only) TX buffer 0
 }

//---

BOOL testCAN0(void) {

 if((CAN0RFLG & BM_RXF) == 0) return FALSE;
 return TRUE;
 }

User Manual

35

//---

UINT8 getCAN0(void) {

 UINT8 c;

 while((CAN0RFLG & BM_RXF) == 0) ; // wait until CAN RX data pending
 c = *(CAN0RXFG+4); // save data
 CAN0RFLG = BM_RXF; // clear RX flag
 return c;
 }

//---

void putCAN0(UINT16 canid, UINT8 c) {

 while((CAN0TFLG & BM_TXE0) == 0) ; // wait until Tx buffer released

 *(CAN0TXFG+0) = canid >> 8; // destination address
 *(CAN0TXFG+1) = canid & 0xe0;
 *(CAN0TXFG+4) = c;
 *(CAN0TXFG+12) = 1; // one byte data
 *(CAN0TXFG+13) = 0; // priority = 0 (highest)

 CAN0TFLG = BM_TXE0; // initiate transfer
 }

//===

Bus Interface
The MCU ports A, B, K and (partly) E are related to the Multiple-

xed External Bus Interface (MEBI). On the S12compact, all bus signals
are accessible via two header connectors (X7, X8; not mounted by
default).

A small memory expansion PCB can be plugged onto these two
connectors, which is especially useful for debugging purposes (Flash
emulation).

In Single Chip Mode, which is the default MCU operating mode of
the S12compact, the Multiplexed External Bus Interface is not used and
the ports A, B, K can be used as general-purpose I/O-ports.

S12compact

36

7. Application Hints

Behaviour after Reset
As soon as the reset input of the microcontroller is released, the

MCU reads the Interrupt Vector at memory address $FFFE/F and then
jumps to the address found there.

In the default delivery condition of the S12compact, the Flash
module of the MCU contains Motorola's Monitor Program D-Bug12.
The reset vector points to the start of this Monitor Software. As a result,
the monitor will start immediately after reset.

The monitor functions are described in a seperate document
(D-Bug12 Reference Guide, see product CD).

Startup Code
Every Microcontroller firmware starts with a number of hardware

initialization commands. For the S12compact, only setting up the stack
pointer is crucial. While it was important for HC12 derivatives to
disable the Watchdog, the COP Watchdog of HCS12 devices is already
disabled out of reset.

Additional Information on the Web
Additional information about the S12compact Controller Module

will be published on our Website, as it becomes available:

http://elmicro.com/en/s12compact.html

User Manual

37

8. TwinPEEKs Monitor
Software Version 2.3

Serial Communication
TwinPEEKs communicates over the first RS232 interface ("SER0",

X3) at 19200 Baud. Settings are: 8N1, no hardware or software hand-
shake, no protocol.

Autostart Function
After reset, the TwinPEEKs monitor checks, whether port pins PE5

(MODA) and PE6 (MODB) are connected (X1B pins 1+2). If this is the
case, the monitor immediately jumps to address $8000.

This feature allows to start an application program automatically
without modifying the reset vector, which is located in the protected
Flash Boot Block.

Write Access to Flash and EEPROM
The CPU can read every single byte of the microcontroller's resour-

ces - the type of memory does not matter. However, for write accesses,
some rules have to be followed: Flash and EEPROM have to be erased
before any write attempt. Programming is done by writing words (two
bytes at a time) to aligned addresses.

To form such aligned words, two subsequent bytes have to be
combined. TwinPEEKs is aware of this, but the following problem can
not be avoided by the monitor:

The monitor is processing each S-Record line seperately. If the last
address of such an S-Record is even, the 2nd byte to form a complete
word is missing. TwinPEEKs will append an $FF byte in this case, so it
is able to perform the word write.

The problem occurs, if the byte stream continues with the follo-
wing S-Record line. The byte, that was missing in the first attempt,

S12compact

38

would require a second write access to the same (word) address - which
is not allowed. As a consequence, a write error ("not erased") will be
issued.

To avoid this problem, it is necessary to align all S-Record data
before programming. This can be done using the freely available
Freescale Tool SRECCVT:
SRECCVT -m 0x00000 0xfffff 32 -o <outfile> <infile>

A detailed description of this tool is contained in the SRECCVT
Reference Guide (PDF).

Please note, that it is not possible to program or erase the part of
Flash memory that contains the monitor code. Also, the last 16 bytes of
the EEPROM block are reserved for system use.

Redirected Interrupt Vectors
The interrupt vectors of the HCS12 are located at the end of the

64KB memory address range, which falls within the protected monitor
code space. Therefore, the application program can not modify the
interrupt vectors directly. To provide an alternative way, the monitor
redirects all vectors (except the reset vector) to RAM. The procedure is
similar to how the HC11 behaved in Special Bootstrap Mode.

The application program can set the required interrupt vectors
during runtime (before global interrupt enable!) by placing a jump
instruction into the RAM pseudo vector. The following example shows
the steps to utilizy the IRQ interrupt:

ldaa #$06 ; JMP opcode to
staa $3FEE ; IRQ pseudo vector
ldd #isrFunc ; ISR address to
std $3FEF ; IRQ pseudo vector + 1

For a C program, the following sequence could be used:
// install IRQ pseudo vector in RAM
// (if running with TwinPEEKs monitor)

 *((unsigned char *)0x3fee) = 0x06; // JMP opcode
 *((void (**)(void))0x3fef) = isrFunc;

User Manual

39

The following assembly listing is part of the monitor program.

It shows the original vector addresses (1st column from the left) as
well as the redirected addresses in RAM (2nd column):
FF80 : 3F43 dc.w TP_RAMTOP-189 ; reserved
FF82 : 3F46 dc.w TP_RAMTOP-186 ; reserved
FF84 : 3F49 dc.w TP_RAMTOP-183 ; reserved
FF86 : 3F4C dc.w TP_RAMTOP-180 ; reserved
FF88 : 3F4F dc.w TP_RAMTOP-177 ; reserved
FF8A : 3F52 dc.w TP_RAMTOP-174 ; reserved
FF8C : 3F55 dc.w TP_RAMTOP-171 ; PWM Emergency Shutdown
FF8E : 3F58 dc.w TP_RAMTOP-168 ; Port P
FF90 : 3F5B dc.w TP_RAMTOP-165 ; CAN4 transmit
FF92 : 3F5E dc.w TP_RAMTOP-162 ; CAN4 receive
FF94 : 3F61 dc.w TP_RAMTOP-159 ; CAN4 errors
FF96 : 3F64 dc.w TP_RAMTOP-156 ; CAN4 wake-up
FF98 : 3F67 dc.w TP_RAMTOP-153 ; CAN3 transmit
FF9A : 3F6A dc.w TP_RAMTOP-150 ; CAN3 receive
FF9C : 3F6D dc.w TP_RAMTOP-147 ; CAN3 errors
FF9E : 3F70 dc.w TP_RAMTOP-144 ; CAN3 wake-up
FFA0 : 3F73 dc.w TP_RAMTOP-141 ; CAN2 transmit
FFA2 : 3F76 dc.w TP_RAMTOP-138 ; CAN2 receive
FFA4 : 3F79 dc.w TP_RAMTOP-135 ; CAN2 errors
FFA6 : 3F7C dc.w TP_RAMTOP-132 ; CAN2 wake-up
FFA8 : 3F7F dc.w TP_RAMTOP-129 ; CAN1 transmit
FFAA : 3F82 dc.w TP_RAMTOP-126 ; CAN1 receive
FFAC : 3F85 dc.w TP_RAMTOP-123 ; CAN1 errors
FFAE : 3F88 dc.w TP_RAMTOP-120 ; CAN1 wake-up
FFB0 : 3F8B dc.w TP_RAMTOP-117 ; CAN0 transmit
FFB2 : 3F8E dc.w TP_RAMTOP-114 ; CAN0 receive
FFB4 : 3F91 dc.w TP_RAMTOP-111 ; CAN0 errors
FFB6 : 3F94 dc.w TP_RAMTOP-108 ; CAN0 wake-up
FFB8 : 3F97 dc.w TP_RAMTOP-105 ; FLASH
FFBA : 3F9A dc.w TP_RAMTOP-102 ; EEPROM
FFBC : 3F9D dc.w TP_RAMTOP-99 ; SPI2
FFBE : 3FA0 dc.w TP_RAMTOP-96 ; SPI1
FFC0 : 3FA3 dc.w TP_RAMTOP-93 ; IIC
FFC2 : 3FA6 dc.w TP_RAMTOP-90 ; BDLC
FFC4 : 3FA9 dc.w TP_RAMTOP-87 ; Self Clock Mode
FFC6 : 3FAC dc.w TP_RAMTOP-84 ; PLL Lock
FFC8 : 3FAF dc.w TP_RAMTOP-81 ; Pulse Accu B Overflow
FFCA : 3FB2 dc.w TP_RAMTOP-78 ; MDCU
FFCC : 3FB5 dc.w TP_RAMTOP-75 ; Port H
FFCE : 3FB8 dc.w TP_RAMTOP-72 ; Port J
FFD0 : 3FBB dc.w TP_RAMTOP-69 ; ATD1
FFD2 : 3FBE dc.w TP_RAMTOP-66 ; ATD0
FFD4 : 3FC1 dc.w TP_RAMTOP-63 ; SCI1
FFD6 : 3FC4 dc.w TP_RAMTOP-60 ; SCI0
FFD8 : 3FC7 dc.w TP_RAMTOP-57 ; SPI0
FFDA : 3FCA dc.w TP_RAMTOP-54 ; Pulse Accu A Input Edge
FFDC : 3FCD dc.w TP_RAMTOP-51 ; Pulse Accu A Overflow
FFDE : 3FD0 dc.w TP_RAMTOP-48 ; Timer Overflow
FFE0 : 3FD3 dc.w TP_RAMTOP-45 ; TC7
FFE2 : 3FD6 dc.w TP_RAMTOP-42 ; TC6
FFE4 : 3FD9 dc.w TP_RAMTOP-39 ; TC5
FFE6 : 3FDC dc.w TP_RAMTOP-36 ; TC4
FFE8 : 3FDF dc.w TP_RAMTOP-33 ; TC3
FFEA : 3FE2 dc.w TP_RAMTOP-30 ; TC2
FFEC : 3FE5 dc.w TP_RAMTOP-27 ; TC1
FFEE : 3FE8 dc.w TP_RAMTOP-24 ; TC0
FFF0 : 3FEB dc.w TP_RAMTOP-21 ; RTI
FFF2 : 3FEE dc.w TP_RAMTOP-18 ; IRQ
FFF4 : 3FF1 dc.w TP_RAMTOP-15 ; XIRQ
FFF6 : 3FF4 dc.w TP_RAMTOP-12 ; SWI
FFF8 : 3FF7 dc.w TP_RAMTOP-9 ; Illegal Opcode
FFFA : 3FFA dc.w TP_RAMTOP-6 ; COP Fail
FFFC : 3FFD dc.w TP_RAMTOP-3 ; Clock Monitor Fail
FFFE : F000 dc.w main ; Reset

S12compact

40

Usage
A TwinPEEKs command is comprised by a single character, follo-

wed by a number of arguments (as required). All numbers are hexadeci-
mal numbers without prefix or suffix. Both, upper and lower case letters
are allowed.

The CPU's visible address range is 64KB, therefore address
arguments are not longer than 4 digits. An end address always refers to
the following (not included) address. For example, the command "D
1000 1200" will display the address range from $1000 to (including)
$11FF.

User input is handled by a line buffer. Valid ASCII codes are in the
range from $20 to $7E. Backspace ($08) will delete the character left of
the cursor. The <ENTER> key ($0A) is used to conclude the input.

The monitor prompt always displays the current program page (i.e.,
the contents of the PPAGE register).

Monitor Commands

Blank Check
Syntax: B

Blank check whole Flash Memory (ex. monitor code space). If
Flash memory is not blank, then display number of first page containing
a byte not equal to $FF.

Dump Memory
Syntax: D [adr1 [adr2]]

Display memory contents from address adr1 until address adr2. If
end address adr2 is not given, display the following $40 bytes. Memory
location adr1 will be highlighted in the listing.

User Manual

41

Edit Memory
Syntax: E [addr {byte}]

Edit memory contents. In the command line, the start address addr
can be followed by up to four data bytes {byte}, thus allowing byte,
word and doubleword writes. The write access will be performed
immediately and then the function will return to the input prompt.

If the command line did not contain any data {byte}, the interactive
mode will be started. The monitor is able to identify memory areas
which can only be changed on a word-by-word basis (Flash/EEPROM).
In such cases, the monitor always awaits and uses 16-bit data.

To exit the interactive mode, simply type "Q" . Additional
commands are:
 <ENTER> next address
 - previous address
 = same address
 . exit (like Q)

Fill Memory
Syntax: F adr1 adr2 byte

Fill memory area starting at address adr1 and ending before adr2
with the value byte.

Goto Address
Syntax: G [addr]

Call the application program at address addr. Note: there is no
regular way for the application program to return to the monitor.

Help
Syntax: H

Display a brief command overview.

S12compact

42

System Info
Syntax: I

Display system information. This includes address range of register
block, RAM, EEPROM and Flash, and the MCU identifier (PARTID).

Load
Syntax: L

Load an S-Record file into memory. Data records of type S1 (16-bit
MCU addresses) and S2 (linear 24-bit addresses) can be processed.
S0-Records (comment lines) will be skipped. S8- and S9-Records are
recognized as end-of-file mark.

S2-Records use linear adresses according to Freescale guidelines.
The valid address range for the MC9S12DP512 starts at 0x080000
(0x20 * 16KB) and ends at 0x0FFFFF (0x40 * 16 KB - 1).

Before loading into non-volatile memory (EEPROM, Flash), this
kind of memory must always be erased. Also, only word writes can be
used in this case. It may be required to prepare S-Record data accor-
dingly, before it can be downloaded (see instructions above).

The sending terminal program (such as OC-Console) must wait for
the acknowledge byte (*), before starting the transmission of another
line. This way, the transmission speed of both sides (PC and MCU) are
synchronized.

Move Memory
Syntax: M adr1 adr2 adr3

Copy a memory block starting at address adr1 and ending at adr2
(not included) to the area starting at address adr3.

User Manual

43

Select PPAGE
Syntax: P [page]

Select a program page (PPAGE). This page will become visible in
the 16KB page window from $8000 to $BFFF.

Erase Flash
Syntax: X [page]

Erase one page (16KB) of Flash memory.

If page is not specified, the whole Flash memory (ex. monitor code
space) will be erased after user confirmation. To remove (erase) the
monitor code, a BDM tool such as ComPOD12/StarProg is required.

Erase EEPROM
Syntax: Y [sadr]

Erase one sector (double word = 4 byte) of EEPROM memory. The
sector is specified by it's starting address sadr (bits 0 and 1 of sadr are
"don't care").

If sadr is not specified, the whole EEPROM will be erased after
user confirmation.

S12compact

44

9. Memory Map
The memory map of the microcontroller is initialized by the

TwinPEEKs monitor as follows (Note: partly different from reset
default values!):

S12compact.DP512

16KB Flash (equals Page $3F)
TwinPEEKs uses the top 4KB$FFFF$C000

16KB Flash page $20
(any Page $20..$3F, selectable by PPAGE)$BFFF$8000

16KB Flash (equals Page $3E)$7FFF$4000

14KB RAM
TwinPEEKs uses the top 512 bytes$3FFF$0800

1KB (of total 4KB) EEPROM
(the area below $0400 is hidden by control registers,
the top 2048 bytes by the RAM!)

$07FF$0400

Control Registers$03FF$0000

RessourceEndBegin

Note:
Due to a mask set erratum of the MC9S12DP512 Mask Set 4L00M

(and earlier) not only the monitor code in page $3F is write protected,
but also an additional area starting at $B000 up to $BFFF in page $3B.
Consequently, the monitor can not download user code to this region.

However, the whole Flash memory (including the write protected
areas) can be programmed using a BDM tool at any desired time.

User Manual

45

