
ChipS12
Hardware Version 1.11

User Manual

May 30 2008

Copyright (C)2003-2008 by
ELMICRO Computer GmbH & Co. KG
Hohe Str. 9-13 D-04107 Leipzig, Germany
Tel.: +49-(0)341-9104810
Fax: +49-(0)341-9104818
Email: leipzig@elmicro.com
Web: http://elmicro.com

This manual and the product described herein were designed
carefully by the manufacturer. We have made every effort to avoid
mistakes but we cannot guarantee that it is 100% free of errors.

The manufacturer's entire liability and your exclusive remedy shall
be, at the manufacturer's option, return of the price paid or repair or
replacement of the product. The manufacturer disclaims all other
warranties, either expressed or implied, including but not limited to
implied warranties of merchantability and fitness for a particular purpo-
se, with respect to the product including accompanying written material,
hardware, and firmware.

In no event shall the manufacturer or its supplier be liable for any
damages whatsoever (including, without limitation, damages for loss of
business profits, business interruption, loss of business information, or
other pecuniary loss) arising out of the use of or inability to use the
product, even if the manufacturer has been advised of the possibility of
such damages. The product is not designed, intended or authorized for
use in applications in which the failure of the product could create a
situation where personal injury or death may occur. Should you use the
product for any such unintended or unauthorized application, you shall
indemnify and hold the manufacturer and its suppliers harmless against
all claims, even if such claim alleges that the manufacturer was negli-
gent regarding the design or implementation of the product.

Product features and prices may change without notice.

All trademarks are property of their respective holders.

ChipS12

Contents

22CAN Interface .
22Real Time Clock .
20Serial EEPROM .
20IIC Bus .
19SPI Bus .
17RS232 Interfaces .
17Indicator LED .
15Integrated A/D-Converter .
15Operating Modes, BDM Support .
13Clock Generation and PLL .
12Reset Generation .
11Controller Core, Power Supply .
11Schematic Diagram .
117. Circuit Description .

106. Mechanical Dimensions .

9Solder Bridges .
9Jumpers .
95. Jumpers and Solder Bridges .

84. Components Location Diagram .

73. Module Pinout .

62. Quick Start .

5Development Package Contents .
4Technical Data .
31. Overview .

User Manual

1

36Notes on Power Supply .
36Schematic Diagram .
35Jumpers and Connectors .
34Parts Location Plan .
3411. Carrier Board .

3310. Memory Map .

29Monitor Commands .
29Usage .
27Redirected Interrupt Vectors .
26Write Access to Flash EEPROM .
26Autostart Function .
26Serial Communication .
269. TwinPEEKs Monitor .

25Additional Information on the Web .
25Startup Code .
25Behaviour after Reset .
258. Application Hints .

ChipS12

2

1. Overview
ChipS12 is a miniaturized controller module based on a powerful

16-bit HCS12 microcontroller. It can be easily plugged into a DIP40
socket on the user's application PCB.

The module can be operated with either 3.3V or 5V which makes it
suited for a wide range of industrial applications.

A complete development package is available to kick start your
development work. It contains a ChipS12 controller module, a carrier
board including a large number of useful peripherals (such as LEDs,
buttons, buzzer and LC-display) and a set of cables. Tool software,
documentation and example programs are provided on a CD-ROM.

The ChipS12 is equipped with a MC9S12C128 microcontroller unit
(MCU). It contains a 16-bit HCS12 CPU, 128KB of Flash memory,
4KB RAM and a large amount of peripheral function blocks, such as
SCI, SPI, CAN, Timer, PWM, ADC and General-Purpose-I/Os. The
MC9S12C128 has full 16-bit data paths throughout. An integrated
PLL-circuit allows adjusting performance vs. current consumption
according to the needs of the user application.

For HCS12 microcontrollers, a wide range of software tools
(monitors, C-compilers, BDM-debuggers) is available to accelerate the
development process.

User Manual

3

Technical Data

w MCU MC9S12C128 with LQFP48 package (SMD)
w HCS12 16-bit CPU, uses same programming model and

command set as the HC12
w 16 MHz crystal clock, up to 25 MHz bus clock using PLL
w 128 KB Flash
w 4 KB RAM
w 256 KBit serial EEPROM
w 1x SCI - asynch. serial interface (incl. RS232 drivers)
w 1x SPI - synch. serial interface
w 1x msCAN module (CAN 2.0A/B-compatible)
w High-Speed CAN bus driver (optional for 5V or 3.3V)
w 8x 16-bit Timer (Input Capture/Output Compare)
w 5x PWM (Pulse Width Modulator)
w 8-channel 10-bit A/D-Converter
w Integrated LVI-circuit (Reset Controller)
w BDM - Background Debug Mode Interface, 6-pin connector
w Indicator LED
w up to 26 general-purpose I/Os available (depends on usage of

other on-board functions)
w Option: Real Time Clock providing time of day, calendar, alarm

function and automatic switch-over to ext. backup battery
w Operating voltage either 3.3V or 5V (depending on installed

CAN driver type), current consumption typ. 25mA
w 2.0" x 0.7" x 0.5" module size
w DIP40 footprint

ChipS12

4

Development Package Contents

w ChipS12 Controller Module with MC9S12C128, incl. Real
Time Clock and 5V CAN bus driver

w TwinPEEKs Monitor (in the MCU's Flash memory)
w Carrier Board with DIP40 socket for the ChipS12 module,

LC-display and a large number of peripheral functions
w RS232 cable (Sub-D9)
w BDM cable between ChipS12 and Carrier Board
w User manual (this document)
w Schematic Diagrams
w CD-ROM: contains assembler software, data sheets, CPU12

Reference Manual, code examples, C-compiler (evaluation
version), etc.

User Manual

5

2. Quick Start
As no one likes to read lengthy manuals, we will summarize the

most important things in the following section. If you need any additio-
nal information, please refer to the more detailed sections of this
manual.

Here is how you can start with the development package:

w Please check the board for any damages due to transportation
w Check if the ChipS12 module is mounted correctly on the

carrier board (red BDM connectors adjacent to each other)
w Connect the device via RS232 (connector K1 on the carrier

board) to your PC. Use the serial cable (Sub-D9, 1:1) which
comes in the box.

w On the PC, start a Terminal Program. An easy to use Terminal
Program is OC-Console, which is available at no charge from
our Website!

w Select a baudrate of 19200 Bd. Disable all hardware or software
protocols.

w Connect a power supply to K4, delivering approx. 9V (8..12V,
polarity does not matter)

w Please note: wall plug power supplies are usually not stabilized
and they provide a voltage that is higher than the nominal (full
load) voltage. Therefore, in order to get "real" 9V, a "nominal"
settinmg of 6V or 7.5V is usually sufficient. The higher the
input voltage, the more heat will be produced by VR1.

w Once powered up, LD1 on the carrier board and D1 on the
ChipS12 module will turn on and the Monitor program will
start, displaying a message and awaiting your commands.

We hope you will enjoy working with ChipS12!

ChipS12

6

3. Module Pinout

/IRQ2120GND

/XIRQ2219CANH

PAD002318CANL

PAD012417VBAT

PAD022516/IRTC

PAD032615PE4

PAD042714PT7

PAD052813PT6

PAD062912PT5

PAD073011PT4

VRH3110PT3

PA0329PT2

PB4338PT1

PS0347PT0

PS1356PM1

/SS365PM0

MOSI374PP5

MISO383/RESET

SCK392TXD

VCC401RXD

User Manual

7

4. Components Location Diagram

Top View Bottom View

ChipS12

8

5. Jumpers and Solder Bridges

Jumpers
There are no jumpers on the ChipS12 module.

Solder Bridges
The following solder bridges are located on the bottom side of the

PCB (see components location diagram on previous page):

BR1: VRH
open external supply of VRH required
closed* VRH connected to VDDA (VCC) on-board

BR2: R1OUT
1-2* enable RS232 receiver output R1OUT

(drives PS0 of MCU)
2-3 disable (tristate) RS232 receiver output R1OUT

(Port pin PS0 freely available)

BR3: SHDN
1-2* enable RS232 transceiver IC2 permanently
2-3 PE4 of MCU controls suspend mode of IC2

BR4: RRTC
open* disable reset by RTC, /VDCC output of RTC

(IC6) not in use
closed /VDCC output of RTC connected to /RESET;

provides additional LVI-function: RTC causes
reset if battery-switchover is activated (see RTC
data sheet)

* = factory default

User Manual

9

6. Mechanical Dimensions
The ChipS12 module fits on a standard DIP40-socket. The pin

spacing is 0.1" (2.54 mm) and the distance between pin rows is 0.6"
(15.24 mm).

The outline dimensions of the module are 2.0" (50.8 mm) x 0.7"
(17.78 mm).

ChipS12

10

7. Circuit Description
In this section, a number of details will be presented on how to

work with the HCS12 in general and the ChipS12 Controller Module in
particular.

Please be aware that, even if this manual can provide some specific
hints, it is impossible to cover all kinds of knowledge and techniques
required to design a microcontroller application. Please refer to the data
sheets of the silicon vendors and to the manuals of your software tools
to get additional information.

The software demos included in this paragraph are for demonstra-
tion puposes only. Please note, that we cannot guarantee for the correct-
ness and fitness for a particular purpose.

Schematic Diagram
To ensure best visibility of all details, the schematic diagram of the

ChipS12 is provided as a separate document.

Controller Core, Power Supply
The MCU (IC1) has three supply pin pairs: VDDR/VSSR,

VDDX/VSSX and VDDA/VSSA. The nominal operating voltage
(designated as VCC in the schematic diagram) of the MC9S12C128 is
in the range of 3V to 5V. Internally, the MCU uses a core voltage of
only 2.5V. The necessary voltage regulator is already included in the
chip, as well as I/O-buffers for all general-purpose input/output pins.
Therefore, the MCU behaves like a 5V or 3.3V device from an external
point of view. There is just one exception: the signals for oscillator and
PLL are based on the core voltage and must not be driven by an external
voltage.

The three terminal pairs mentioned above must be decoupled
carefully. A ceramic capacitor of 100nF is connected directly at each
pair (C15, C16, C17), plus an additional 10µF tantalum capacitor (C5).
Special care must be taken with VDDA, since this is the reference point
for the internal voltage regulator.

User Manual

11

The internal core voltage appears at the pin pairs VDD1/VSS1 and
VDDPLL/VSSPLL in order to allow adding decoupling capacitors here
as well (C7A, C7B, C14). A static current draw from these terminals is
not allowed. This is especially true for VDDPLL, which serves as the
reference point for the external PLL loop filter combination (R3, C3,
C4).

There are two MCU pins (VRH/VRL) to define the upper and
lower voltage limits for the internal analog to digital (ATD) converter.
While VRL is grounded, VRH is connected to VDDA via solder bridge
BR1. C18 is used for decoupling. VRH can be supplied externally after
opening solder bridge BR1. This can be useful if the main supply is not
in the desired tolerance band or if the ATD should work with a
reference value lower than VCC. VRH must not exceed VDDA, regard-
less of the selected supply mode.

The TEST pin is used for factory testing only, in an application
circuit this pin always has to be grounded.

Reset Generation
/RESET is the MCU's active low bidirectional reset pin. As an

input it initializes the MCU asynchronously to a known start-up state.
As an open-drain output it indicates that a system reset (internal to
MCU) has been triggered. The HCS12 MCUs already contain on-chip
reset generation circuitry including power-on reset, COP watchdog
timer and clock monitor. Additionally, the MC9S12C128 is equipped
with a Low Voltage Inhibit (LVI) circuit. The task of this LVI circuit is
to issue a stable reset condition if the power supply falls below the level
required for proper MCU operation.

To furthermore increase system reliability, IC4 can be added as an
external LVI circuit. IC4 has an open-drain output in order to prevent
collisions with the MCU's bidirectional reset pin. The /RESET signal is
high in inactive state because IC4 contains an integrated pull-up resistor
(approx. 5kOhm). Therefore, R1 is not needed if the optional IC4 is
equipped.

ChipS12

12

The reset pulse issued by IC4 has a typical duration of 250ms
(minimum is 140ms). It is important to note, that this pulse will only be
applied during a power cycle event. IC4 will not stretch pulses coming
from the MCU's internal reset sources. This is essentially important,
since otherwise the MCU would not be able to detect the source of a
reset. This would finally lead to a wrong reset vector fetch and could
result in a system software crash. Please be aware, that also a capacitor
on the reset line would cause the same fatal effect, therefore external
circuitry connected to the /RESET pin of a HC12/HCS12 MCU should
never include a large capacitance!

Clock Generation and PLL
The on-chip oscillator of the MC9S12Cxx can generate the primary

clock (OSCCLK) using a quartz crystal (Q1) connected between the
EXTAL and XTAL pins. The allowed frequency range is 0.5 to
16MHz. As usual, two load capacitors are part of the oscillator circuit
(C1, C2). However, this circuit is modified compared to the standard
Pierce oscillator that was widely used for the HC11 and HC12.

On the ChipS12, the MC9S12Cxx uses a Colpitts oscillator with
translated ground scheme. The main advantage is a very low current
consumption, though the component selection is more critical. The
ChipS12 circuit uses a high-quality quartz crystal together with two
load capacitors of only a few picofarad. Furthermore, special care was
taken for the PCB design to introduce as little stray capacitance as
possible in respect to XTAL and EXTAL.

With an OSCCLK of 16 MHz, the internal bus speed (ECLK)
becomes 8 MHz by default. To realize higher bus clock rates, the PLL
has to be engaged. The MC9S12Cxx can be operated with a bus speed
of up to 25MHz, though most designs use 24MHz because this value is
a better basis to generate a wide range of SCI baud rates.

A passive external loop filter must be placed on the XFC pin. The
filter (R3, C3, C4) is a second-order, low-pass filter to eliminate the
VCO input ripple. The value of the external filter network and the
reference frequency determines the speed of the corrections and the

User Manual

13

stability of the PLL. If PLL usage is not required, the XFC pin should
be pulled-up to VDDPLL level.

The choice of filter component values is always a compromise over
lock time and stability of the loop. 5 to 10kHz loop bandwidth and a
damping factor of 0.9 are a good starting point for the calculations.
With a quartz frequency of 16MHz and a desired bus clock of 24MHz, a
possible choice is R3 = 4.7k and C3 = 22nF. C4 should be approxi-
mately (1/20..1/10) x C3, e.g. 2.2nF in our case. These values are
suitable for a reference frequency of 1MHz (Note: to be defined in
example file S12_CRG.H). The according reference divider register
value is REFDV=15 and the synthesizer register setting becomes
SYNR=23. Please refer to the chapter "XFC Component Selection" in
the MC9S12DP256B Device User Guide for detailed description of
how to calculate values for other system configurations.

The following source listing shows the steps required to initialize
the PLL:

//===
// File: S12_CRG.C - V1.00
//===

//-- Includes ---

#include <mc9s12dp512.h>
#include "s12_crg.h"

//-- Code ---

void initPLL(void) {

 CLKSEL &= ~BM_PLLSEL; // make sure PLL is *not* in use
 PLLCTL |= BM_PLLON+BM_AUTO; // enable PLL module, Auto Mode
 REFDV = S12_REFDV; // set up Reference Divider
 SYNR = S12_SYNR; // set up Synthesizer Multiplier
 // the following dummy write has no effect except consuming some cycles,
 // this is a workaround for erratum MUCTS00174 (mask set 0K36N only)
 // CRGFLG = 0;
 while((CRGFLG & BM_LOCK) == 0) ; // wait until PLL is locked
 CLKSEL |= BM_PLLSEL; // switch over to PLL clock
 }

//===

R4 is used to pull /XCLKS high during reset which will select
Colpitts configuration of the oscillator. If /XCLKS were low during
reset, the oscillator would assume Pierce mode, which would require an
alternate circuitry. However, this mode could be used to apply an exter-
nal clock signal to the EXTAL pin of the MC9S12Cxx.

ChipS12

14

Please note, that different derivatives of the HCS12 have different
funtionality regarding the /XCLKS pin.

Operating Modes, BDM Support
Three pins of the HCS12 are used to select the MCU operating

mode: MODA, MODB and BKGD (=MODC). While MODA and
MODB are internally pulled low to select Single Chip Mode, BKGD is
pulled high (R2) by default. As a consequence, the MCU will start in
Normal Single Chip Mode, which is the most common operating mode
for application code running on the HCS12.

The HCS12 operating mode used for download and debugging is
called Background Debug Mode (BDM). BDM is active immediately
out of reset if the mode pins MODA/MODB/BKGD are configured for
Special Single Chip Mode. This is done by pulling the BKGD pin low
during reset, while MODA and MODB are pulled-down as well.

Because only the BKGD level is different for the two modes, it is
quite easy to change over. However, there is no need to switch the
BKGD line manually via a jumper or solder bridge because this can be
done by a BDM-Pod (such as ComPOD12) attached to connector X1. A
BDM-Pod is required for BDM-based download and/or debugging
anyway, so it can handle this task automatically, usually controlled by a
PC-based debugging program.

Integrated A/D-Converter
The MC9S12C128 contains a 10-bit Analog-to-Digital Converter

module. This module (ATD) provides eight multiplexed input channels.

VRH is the upper reference voltage for all A/D-channels. On the
ChipS12, VRH is connected to VDDA (VCC) through solder bridge
BR1. After opening BR1, it is possible to use an external reference
voltage, connected to X0/31.

The following example program shows the initialization sequence
for the A/D-converter module ATD and a single-channel conversion
routine. The source file S12_ATD.C also contains some additional
functions for the integrated ATD module.

User Manual

15

//===
// File: S12_ATD.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_atd.h"

//-- Code ---

// Func: Initialize ATD module
// Args: -
// Retn: -
//
void initATD0(void) {

 // enable ATD module
 ATD0CTL2 = BM_ADPU;
 // 10 bit resolution, clock divider=12 (allows ECLK=6..24MHz)
 // 2nd sample time = 2 ATD clocks
 ATD0CTL4 = BM_PRS2 | BM_PRS0;
 }

//---

// Func: Perform single channel ATD conversion
// Args: channel = 0..7
// Retn: unsigned, left justified 10 bit result
//
UINT16 getATD0(UINT8 channel) {

 // select one conversion per sequence
 ATD0CTL3 = BM_S1C;
 // right justified unsigned data mode
 // perform single sequence, one out of 8 channels
 ATD0CTL5 = BM_DJM | (channel & 0x07);
 // wait until Sequence Complete Flag set
 // CAUTION: no loop time limit implemented!
 while((ATD0STAT0 & BM_SCF) == 0) ;
 // read result register
 return ATD0DR0;
 }

//---

ChipS12

16

Indicator LED
Port pin PE7 drives a single indicator LED (D1). To control this

LED, some simple macros can be used, as shown in the following C
header file:

//===
// File: CHIPS12_LED.H - V1.00
//===

#ifndef __CHIPS12_LED_H
#define __CHIPS12_LED_H

//-- Macros ---

#define initLED() PORTE |= 0x80; DDRE |= 0x80
#define offLED() PORTE |= 0x80
#define onLED() PORTE &= ~0x80
#define toggleLED() PORTE ^= 0x80

//-- Function Prototypes --

/* module contains no code */

#endif //__CHIPS12_LED_H ==

RS232 Interface
The MC9S12Cxx contains an asynchronous serial interface (SCI0)

including one receive line and one transmit line (RXD0, TXD0).
Handshake lines are not provided by the SCI module; they can be added
by using general purpose I/O port lines if required.

On the ChipS12, the SCI signal lines are connected to an RS232
transceiver circuit (IC2). If the RS232 interface is not needed in an
application, the output R1OUT of IC2 can be tri-stated by connecting
contacts 2-3 of solder bridge BR2. As a consequence, the MCU signals
PS0 and PS1 can be used as additional general-purpose I/Os.

To reduce current consumption, IC2 can be brought into suspend
mode by setting the solder bridge BR3 to position 2-3. Now, MCU
signal PE4 can be used to control the /SHDN input of the RS232
transceiver chip. Low level activates power-saving suspend mode.

Please note: PE4 can be configured as clock output (ECLK) by
software. Avoid doing so while PE4 is used for suspend control!

User Manual

17

The following code example shows how to use SCI0 in polling
mode:

//===
// File: S12_SCI.C - V1.10
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_sci.h"

//-- Code ---

void initSCI0(UINT16 bauddiv) {

 SCI0BD = bauddiv & 0x1fff; // baudrate divider has 13 bits
 SCI0CR1 = 0; // mode = 8N1
 SCI0CR2 = BM_TE+BM_RE; // Transmitter + Receiver enable
 }

//---

BOOL testSCI0(void) {

 if((SCI0SR1 & BM_RDRF) == 0) return FALSE;
 return TRUE;
 }

//---

UINT8 getSCI0(void) {

 while((SCI0SR1 & BM_RDRF) == 0) ;
 return SCI0DRL;
 }

//---

void putSCI0(UINT8 c) {

 while((SCI0SR1 & BM_TDRE) == 0) ;
 SCI0DRL = c;
 }

//---

ChipS12

18

SPI Bus
The MC9S12C128 contains one SPI module (SPI0), which can be

used for synchronous serial communication with external SPI chips.

SPI0 consists of four individual signals: MISO, MOSI, SCK and
/SS (MCU port pins PM2 .. PM5). These signals are not used on-board
the ChipS12. They can be accessed at connector X0.

The following listing demonstrates some basic functions (initializa-
tion, 8-bit data transfer) for the SPI-Port SPI0 (chip select signal
handling not included):

//===
// File: S12_SPI.C - V1.02
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_spi.h"

//-- Code ---

void initSPI0(UINT8 bauddiv, UINT8 cpol, UINT8 cpha) {

 // set SS,SCK,MOSI lines to Output
 DDRM |= 0x38; // for HCS12C-Series
// DDRS |= 0xe0; // for HCS12D-Series
 SPI0BR = bauddiv; // set SPI Rate
 // enable SPI, Master Mode, select clock polarity/phase
 SPI0CR1 = BM_SPE | BM_MSTR | (cpol ? BM_CPOL : 0) | (cpha ? BM_CPHA : 0);
 SPI0CR2 = 0; // as default
 }

//---

UINT8 xferSPI0(UINT8 abyte) {

 while((SPI0SR & BM_SPTEF) == 0) ; // wait until transmitter available
 SPI0DR = abyte; // start transfer
 while((SPI0SR & BM_SPIF) == 0) ; // wait until transfer finished
 return(SPI0DR); // read back data received
 }

//===

User Manual

19

IIC-Bus
The MC9S12C128 does not contain a IIC hardware module. To

control the on-board peripherals IC5 (RTC) and IC6 (serial EEPROM),
a simplified software implementation of the IIC bus protocol can be
used (for an example, please refer to file S12_SIIC.S)

The MCU signal PA0 is used as bidirectional data line (SDA),
while PB4 provides the clock (SCL). Both signals can also be used to
access external IIC slaves.

Serial EEPROM
On the ChipS12, extra non-volatile storage space can be provided

by IC6. This serial EEPROM device has a capacity of 16 Kbit. Optio-
nally, larger devices can be used (up to 256Kbit).

IC6 communicates over an IIC interface. The file
CHIPS12_SEEP.C shows how to control the device using the software
IIC module described above:

//===
// File: CHIPS12_SEEP.C - V1.01
// for ChipS12 using 256kBit EEPROM 24LC256
//===

//-- Includes ---

#include "datatypes.h"
#include "s12_siic.h"
#include "chips12_seep.h"

//-- Defines --

// device signature of 24LC256 (8 bit left-justified value)
#define SEEP_DEVICE_ID 0xA0

//-- Variables --

static INT16 SEEP_ErrorCode;

//-- Code ---

void initSEEP(void) {

 SEEP_ErrorCode = SEEP_EC_OK;
 }

//---

INT16 peekSEEP(UINT16 addr) {

 UINT8 b;

 SEEP_ErrorCode = SEEP_EC_OK;
 startIIC();
 if(sendIIC(SEEP_DEVICE_ID + IIC_WRITE) != IIC_ACK)

ChipS12

20

 SEEP_ErrorCode = SEEP_EC_NOTRDY;
 else {
 if(sendIIC((UINT8)((addr >> 8) & 0x7f)) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 if(sendIIC((UINT8)addr) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 restartIIC();
 if(sendIIC(SEEP_DEVICE_ID + IIC_READ) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_RDERR;
 else {
 b = receiveIIC(IIC_NOACK);
 }
 }
 }
 }
 stopIIC();
 if(SEEP_ErrorCode != SEEP_EC_OK)
 return SEEP_ErrorCode;
 return b;
 }

//---

INT16 pokeSEEP(UINT16 addr, UINT8 bval) {

 SEEP_ErrorCode = SEEP_EC_OK;
 startIIC();
 if(sendIIC(SEEP_DEVICE_ID + IIC_WRITE) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_NOTRDY;
 else {
 if(sendIIC((UINT8)((addr >> 8) & 0x7f)) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 if(sendIIC((UINT8)addr) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 if(sendIIC(bval) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_WRERR;
 }
 }
 }
 stopIIC();
 return SEEP_ErrorCode;
 }

//---

INT16 getLastErrSEEP(void) {

 return SEEP_ErrorCode;
 }

//===

User Manual

21

Real Time Clock
The ChipS12 can be optionally equipped with a R2051 Real Time

Clock (RTC) from Ricoh. This chip has an IIC interface and provides
time reference and calendar information.

Interrupts can be generated by the R2051 in different ways. The
periodic interrupt system is configured to generate interrupt signals with
a user-selectable rate. Furthermore, two alarm interrupts can be genera-
ted at preset times. The /INTR pin of the RTC is brought out to X0/16
as signal /IRTC. It can be connected externally to one of the MCU's
interrupt inputs (/IRQ, /XIRQ or some general-purpose I/O-pin).

A backup battery can be connected to the module's VBAT pin
(X0/17) in order to provide a backup supply in case the main power
(VCC) fails. For this purpose, the use of a 3V LiMn primary battery is
recommended. The switchover to backup power is accomplished when
VCC falls below 2.4V. In this state, also the /VDCC output of the RTC
is driven low. By closing BR4, this signal can be used as an additional
system reset source.

Example routines showing how to drive the RTC of ChipS12 are
contained in the file CHIPS12_RTC.C.

CAN Interface
The MC9S12C128 contains one CAN-Module, designated as

CAN0. It utilizes port pins PM0 and PM1. IC3 (option) serves as physi-
cal CAN-bus interface. The CAN-bus signals CANH and CANL are
available at connector X0.

If the ChipS12 is the last node in a CAN bus chain, an external
termination resistor is required. Use a resistor of 120 Ohm between
CANH and CANL.

R6 determines the slope control setting. The standard value (10k)
must be modified for high-speed communication according to the datas-
heet of the manufacturer.

ChipS12

22

The device type used for IC3 must match the supply voltage of the
module. Please check the part numbers mentioned in the schematic
diagram.

CAN communication software can be quite complex. There are
many and diverse ways to establish some CAN protocol, particularly
when looking at the higher protocol layers.

However, to establish a simple connection between two CAN bus
nodes can easily be done, as the following example may show:

//===
// File: S12_CAN.C - V1.01
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_can.h"

//-- Defines --

//-- Variables --

//-- Code ---

// Func: initialize CAN
// Args: -
// Retn: -
// Note: -
//
void initCAN0(UINT16 idar, UINT16 idmr) {

 CAN0CTL0 = BM_INITRQ; // request Init Mode
 while((CAN0CTL1 & BM_INITAK) == 0) ;// wait until Init Mode is established

 // set CAN enable bit, deactivate listen-only mode and
 // use Oscillator Clock (16MHz) as clock source
 CAN0CTL1 = BM_CANE;

 // set up timing parameters for 125kbps bus speed and sample
 // point at 87.5% (complying with CANopen recommendations):
 // fOSC = 16MHz; prescaler = 8 -> 1tq = (16MHz / 8)^-1 = 0.5µs
 // tBIT = tSYNCSEG + tSEG1 + tSEG2 = 1tq + 13tq + 2tq = 16tq = 8µs
 // fBUS = tBIT^-1 = 125kbps
 CAN0BTR0 = 0x07; // sync jump width = 1tq, br prescaler = 8
 CAN0BTR1 = 0x1c; // one sample point, tSEG2 = 2tq, tSEG1 = 13tq

 // we are going to use four 16-bit acceptance filters:
 CAN0IDAC = 0x10;

 // set up acceptance filter and mask register #1:
 // --
 // 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0
 // ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 | ID2 ID1 ID0 RTR IDE xxx xxx xxx
 // --
 // we are going to detect data frames with standard identifier (11 bits)
 // only, so bits RTR (bit4) and IDE (bit3) have to be clear
 CAN0IDAR0 = idar >> 8; // top 8 of 11 bits
 CAN0IDAR1 = idar & 0xe0; // remaining 3 of 11 bits
 CAN0IDMR0 = idmr >> 8; // top 8 of 13 bits
 CAN0IDMR1 = (idmr & 0xe0) | 0x07; // remaining 3 bits + RTR + IDE

 // set up acceptance filter and mask register #2,3,4 just as #1
 CAN0IDAR6 = CAN0IDAR4 = CAN0IDAR2 = CAN0IDAR0;

User Manual

23

 CAN0IDAR7 = CAN0IDAR5 = CAN0IDAR3 = CAN0IDAR1;
 CAN0IDMR6 = CAN0IDMR4 = CAN0IDMR2 = CAN0IDMR0;
 CAN0IDMR7 = CAN0IDMR5 = CAN0IDMR3 = CAN0IDMR1;

 CAN0CTL0 &= ~BM_INITRQ; // exit Init Mode
 while((CAN0CTL1 & BM_INITAK) != 0) ;// wait until Normal Mode is established
 CAN0TBSEL = BM_TX0; // use (only) TX buffer 0
 }

//---

BOOL testCAN0(void) {

 if((CAN0RFLG & BM_RXF) == 0) return FALSE;
 return TRUE;
 }

//---

UINT8 getCAN0(void) {

 UINT8 c;

 while((CAN0RFLG & BM_RXF) == 0) ; // wait until CAN RX data pending
 c = *(CAN0RXFG+4); // save data
 CAN0RFLG = BM_RXF; // clear RX flag
 return c;
 }

//---

void putCAN0(UINT16 canid, UINT8 c) {

 while((CAN0TFLG & BM_TXE0) == 0) ; // wait until Tx buffer released

 *(CAN0TXFG+0) = canid >> 8; // destination address
 *(CAN0TXFG+1) = canid & 0xe0;
 *(CAN0TXFG+4) = c;
 *(CAN0TXFG+12) = 1; // one byte data
 *(CAN0TXFG+13) = 0; // priority = 0 (highest)

 CAN0TFLG = BM_TXE0; // initiate transfer
 }

//===

ChipS12

24

8. Application Hints

Behaviour after Reset
As soon as the reset input of the microcontroller is released, the

MCU reads the Interrupt Vector at memory address $FFFE/F and then
jumps to the address found there.

In the default delivery condition of the ChipS12, the Flash module
of the MCU contains the TwinPEEKs Monitor Program. The reset
vector points to the start of this Monitor Software. As a result, the
monitor will start immediately after reset.

Startup Code
Every Microcontroller firmware starts with a number of hardware

initialization commands. For the ChipS12, only setting up the stack
pointer is crucial. While it was important for HC12 derivatives to
disable the Watchdog, the COP Watchdog of HCS12 devices is already
disabled out of reset.

Additional Information on the Web
Additional information about the ChipS12 Controller Module will

be published on our Website, as it becomes available:

http://elmicro.com/en/chips12.html

User Manual

25

9. TwinPEEKs Monitor
Software Version 2.3

Serial Communication
TwinPEEKs communicates over the RS232 interface using a line

speed of 19200 Baud. Settings are: 8N1, no hardware or software hand-
shake, no protocol.

Autostart Function
After reset, the TwinPEEKs monitor checks, whether port pins PT2

and PT3 (X0/9+10) are connected. If this is the case, the monitor
immediately jumps to address $8000.

This feature allows to start an application program automatically
without modifying the reset vector, which is located in the protected
Flash Boot Block.

Write Access to Flash EEPROM
The CPU can read every single byte of the microcontroller's resour-

ces - the type of memory does not matter. However, for write accesses,
two rules are important: Flash EEPROM has to be erased before any
write attempt. Programming is done by writing words (two bytes at a
time) to aligned addresses.

To form such aligned words, two subsequent bytes have to be
combined. TwinPEEKs is aware of this, but the following problem can
not be avoided by the monitor:

The monitor is processing each S-Record line seperately. If the last
address of such an S-Record is even, the 2nd byte to form a complete
word is missing. TwinPEEKs will append an $FF byte in this case, so it
is able to perform the word write.

The problem occurs, if the byte stream continues with the follo-
wing S-Record line. The byte, that was missing in the first attempt,

ChipS12

26

would require a second write access to the same (word) address - which
is not allowed. As a consequence, a write error ("not erased") will be
issued.

To avoid this problem, it is necessary to align all S-Record data
before programming. This can be done using the freely available
Motorola Tool SRECCVT:
SRECCVT -m 0x00000 0xfffff 32 -o <outfile> <infile>

A detailed description of this tool is contained in the SRECCVT
Reference Guide (PDF).

Redirected Interrupt Vectors
The interrupt vectors of the HCS12 are located at the end of the

64KB memory address range, which falls within the protected monitor
code space. Therefore, the application program can not modify the
interrupt vectors directly. To provide an alternative way, the monitor
redirects all vectors (except the reset vector) to RAM. The procedure is
similar to how the HC11 behaved in Special Bootstrap Mode.

The application program can set the required interrupt vectors
during runtime (before global interrupt enable!) by placing a jump
instruction into the RAM pseudo vector. The following example shows
the steps to utilizy the IRQ interrupt:

ldaa #$06 ; JMP opcode to
staa $0FEE ; IRQ pseudo vector
ldd #isrFunc ; ISR address to
std $0FEF ; IRQ pseudo vector + 1

For a C program, the following sequence could be used:
// install IRQ pseudo vector in RAM
// (if running with TwinPEEKs monitor)

 *((unsigned char *)0x0fee) = 0x06; // JMP opcode
 *((void (**)(void))0x0fef) = isrFunc;

The following assembly listing is part of the monitor program. It
shows the original vector addresses (1st column from the left) as well as
the redirected addresses in RAM (2nd column).

User Manual

27

Please note: the actual vector usage depends on the particular
HCS12 derivative (see Device Guide).
FF80 : 0F43 dc.w TP_RAMTOP-189 ; reserved
FF82 : 0F46 dc.w TP_RAMTOP-186 ; reserved
FF84 : 0F49 dc.w TP_RAMTOP-183 ; reserved
FF86 : 0F4C dc.w TP_RAMTOP-180 ; reserved
FF88 : 0F4F dc.w TP_RAMTOP-177 ; reserved
FF8A : 0F52 dc.w TP_RAMTOP-174 ; reserved
FF8C : 0F55 dc.w TP_RAMTOP-171 ; PWM Emergency Shutdown
FF8E : 0F58 dc.w TP_RAMTOP-168 ; Port P
FF90 : 0F5B dc.w TP_RAMTOP-165 ; CAN4 transmit
FF92 : 0F5E dc.w TP_RAMTOP-162 ; CAN4 receive
FF94 : 0F61 dc.w TP_RAMTOP-159 ; CAN4 errors
FF96 : 0F64 dc.w TP_RAMTOP-156 ; CAN4 wake-up
FF98 : 0F67 dc.w TP_RAMTOP-153 ; CAN3 transmit
FF9A : 0F6A dc.w TP_RAMTOP-150 ; CAN3 receive
FF9C : 0F6D dc.w TP_RAMTOP-147 ; CAN3 errors
FF9E : 0F70 dc.w TP_RAMTOP-144 ; CAN3 wake-up
FFA0 : 0F73 dc.w TP_RAMTOP-141 ; CAN2 transmit
FFA2 : 0F76 dc.w TP_RAMTOP-138 ; CAN2 receive
FFA4 : 0F79 dc.w TP_RAMTOP-135 ; CAN2 errors
FFA6 : 0F7C dc.w TP_RAMTOP-132 ; CAN2 wake-up
FFA8 : 0F7F dc.w TP_RAMTOP-129 ; CAN1 transmit
FFAA : 0F82 dc.w TP_RAMTOP-126 ; CAN1 receive
FFAC : 0F85 dc.w TP_RAMTOP-123 ; CAN1 errors
FFAE : 0F88 dc.w TP_RAMTOP-120 ; CAN1 wake-up
FFB0 : 0F8B dc.w TP_RAMTOP-117 ; CAN0 transmit
FFB2 : 0F8E dc.w TP_RAMTOP-114 ; CAN0 receive
FFB4 : 0F91 dc.w TP_RAMTOP-111 ; CAN0 errors
FFB6 : 0F94 dc.w TP_RAMTOP-108 ; CAN0 wake-up
FFB8 : 0F97 dc.w TP_RAMTOP-105 ; FLASH
FFBA : 0F9A dc.w TP_RAMTOP-102 ; EEPROM
FFBC : 0F9D dc.w TP_RAMTOP-99 ; SPI2
FFBE : 0FA0 dc.w TP_RAMTOP-96 ; SPI1
FFC0 : 0FA3 dc.w TP_RAMTOP-93 ; IIC
FFC2 : 0FA6 dc.w TP_RAMTOP-90 ; BDLC
FFC4 : 0FA9 dc.w TP_RAMTOP-87 ; Self Clock Mode
FFC6 : 0FAC dc.w TP_RAMTOP-84 ; PLL Lock
FFC8 : 0FAF dc.w TP_RAMTOP-81 ; Pulse Accu B Overflow
FFCA : 0FB2 dc.w TP_RAMTOP-78 ; MDCU
FFCC : 0FB5 dc.w TP_RAMTOP-75 ; Port H
FFCE : 0FB8 dc.w TP_RAMTOP-72 ; Port J
FFD0 : 0FBB dc.w TP_RAMTOP-69 ; ATD1
FFD2 : 0FBE dc.w TP_RAMTOP-66 ; ATD0
FFD4 : 0FC1 dc.w TP_RAMTOP-63 ; SCI1
FFD6 : 0FC4 dc.w TP_RAMTOP-60 ; SCI0
FFD8 : 0FC7 dc.w TP_RAMTOP-57 ; SPI0
FFDA : 0FCA dc.w TP_RAMTOP-54 ; Pulse Accu A Input Edge
FFDC : 0FCD dc.w TP_RAMTOP-51 ; Pulse Accu A Overflow
FFDE : 0FD0 dc.w TP_RAMTOP-48 ; Timer Overflow
FFE0 : 0FD3 dc.w TP_RAMTOP-45 ; TC7
FFE2 : 0FD6 dc.w TP_RAMTOP-42 ; TC6
FFE4 : 0FD9 dc.w TP_RAMTOP-39 ; TC5
FFE6 : 0FDC dc.w TP_RAMTOP-36 ; TC4
FFE8 : 0FDF dc.w TP_RAMTOP-33 ; TC3
FFEA : 0FE2 dc.w TP_RAMTOP-30 ; TC2
FFEC : 0FE5 dc.w TP_RAMTOP-27 ; TC1
FFEE : 0FE8 dc.w TP_RAMTOP-24 ; TC0
FFF0 : 0FEB dc.w TP_RAMTOP-21 ; RTI
FFF2 : 0FEE dc.w TP_RAMTOP-18 ; IRQ
FFF4 : 0FF1 dc.w TP_RAMTOP-15 ; XIRQ
FFF6 : 0FF4 dc.w TP_RAMTOP-12 ; SWI
FFF8 : 0FF7 dc.w TP_RAMTOP-9 ; Illegal Opcode
FFFA : 0FFA dc.w TP_RAMTOP-6 ; COP Fail
FFFC : 0FFD dc.w TP_RAMTOP-3 ; Clock Monitor Fail
FFFE : F000 dc.w main ; Reset

ChipS12

28

Usage
A TwinPEEKs command is comprised by a single character, follo-

wed by a number of arguments (as required). All numbers are hexadeci-
mal numbers without prefix or suffix. Both, upper and lower case letters
are allowed.

The CPU's visible address range is 64KB, therefore address
arguments are not longer than 4 digits. An end address always refers to
the following (not included) address. For example, the command "D
1000 1200" will display the address range from $1000 to (including)
$11FF.

User input is handled by a line buffer. Valid ASCII codes are in the
range from $20 to $7E. Backspace ($08) will delete the character left of
the cursor. The <ENTER> key ($0A) is used to conclude the input.

The monitor prompt always displays the current program page (i.e.,
the contents of the PPAGE register).

Monitor Commands

Blank Check
Syntax: B

Blank check whole Flash Memory (ex. monitor code space). If
Flash memory is not blank, then display number of first page containing
a byte not equal to $FF.

Dump Memory
Syntax: D [adr1 [adr2]]

Display memory contents from address adr1 until address adr2. If
end address adr2 is not given, display the following $40 bytes. Memory
location adr1 will be highlighted in the listing.

User Manual

29

Edit Memory
Syntax: E [addr {byte}]

Edit memory contents. In the command line, the start address addr
can be followed by up to four data bytes {byte}, thus allowing byte,
word and doubleword writes. The write access will be performed
immediately and then the function will return to the input prompt.

If the command line did not contain any data {byte}, the interactive
mode will be started. The monitor is able to identify memory areas
which can only be changed on a word-by-word basis (Flash EEPROM).
In such cases, the monitor always awaits and uses 16-bit data.

To exit the interactive mode, simply type "Q" . Additional
commands are:
 <ENTER> next address
 - previous address
 = same address
 . exit (like Q)

Fill Memory
Syntax: F adr1 adr2 byte

Fill memory area starting at address adr1 and ending before adr2
with the value byte.

Goto Address
Syntax: G [addr]

Call the application program at address addr. Note: there is no
regular way for the application program to return to the monitor.

Help
Syntax: H

Display a brief command overview.

ChipS12

30

System Info
Syntax: I

Display system information. This includes address range of register
block, RAM, EEPROM and Flash, and the MCU identifier (PARTID).

Load
Syntax: L

Load an S-Record file into memory. Data records of type S1 (16-bit
MCU addresses) and S2 (linear 24-bit addresses) can be processed.
S0-Records (comment lines) will be skipped. S8- and S9-Records are
recognized as end-of-file mark.

S2-Records use linear adresses according to Motorola guidelines.
The valid address range for the MC9S12C128 starts at 0x0E0000 (0x38
* 16KB) and ends at 0xFFFFF (0x40 * 16 KB - 1).

Before loading into non-volatile memory (Flash EEPROM), this
kind of memory must always be erased. Also, only word writes can be
used in this case. It may be required to prepare S-Record data accor-
dingly, before it can be downloaded (see instructions above).

The sending terminal program (such as OC-Console) must wait for
the acknowledge byte (*), before starting the transmission of another
line. This way, the transmission speed of both sides (PC and MCU) are
synchronized.

Move Memory
Syntax: M adr1 adr2 adr3

Copy a memory block starting at address adr1 and ending at adr2
(not included) to the area starting at address adr3.

User Manual

31

Select PPAGE
Syntax: P [page]

Select a program page (PPAGE). This page will become visible in
the 16KB page window from $8000 to $BFFF.

Erase Flash
Syntax: X [page]

Erase one page (16KB) of Flash memory.

If page is not specified, the whole Flash memory (ex. monitor code
space) will be erased after user confirmation. To remove (erase) the
monitor code, a BDM tool such as ComPOD12/StarProg is required.

ChipS12

32

10. Memory Map
The memory map of the MC9S12C128 is initialized by the

TwinPEEKs monitor as follows:

ChipS12.C32*

16KB Flash (equals Page $3F)
TwinPEEKs uses the top 4KB$FFFF$C000

16KB Flash Page $3E
(Page $3E or $3F selectable using PPAGE)$BFFF$8000

16KB Flash (equals Page $3E)$7FFF$4000

2KB RAM
TwinPEEKs uses the top 512 bytes$0FFF$0800

Control Registers$03FF$0000

BelegungEndeStart

ChipS12.C128

16KB Flash (equals Page $3F)
TwinPEEKs uses the top 4KB$FFFF$C000

16KB Flash Page $38
(Page $38..$3F selectable using PPAGE)$BFFF$8000

16KB Flash (equals Page $3E)$7FFF$4000

16KB Flash (equals Page $3D),
with 12KB of it visible (the lower 4KB are hidden by
RAM and Control Registers)

$3FFF$1000

4KB RAM, with 3KB of it visible (the lower 1024
bytes are hidden by Control Registers)
TwinPEEKs uses the top 512 Bytes

$0FFF$0400

Control Registers$03FF$0000

BelegungEndeStart

* old board version (no longer available)

User Manual

33

11. Carrier Board

Parts Location Plan

ChipS12

34

Jumpers and Connectors

Connector for alphanum. LC-displayLCD1

BDM connector for debugger (BDM-pod)K6

BDM connection to ChipS12 moduleK5

Connector for (wall) power supply, polarity does
not matter, input ca. 8..15Volt DC

K4

optional; may be used as SPI-portnot equ.K3

CAN connector Sub-D9K2

RS232 connector (use Sub-D9 1:1 cable to PC)K1

close to connect backup battery BAT1 to VBAT
input of ChipS12 (RTC backup supply)

open*J7

close to connect supply voltage VIN to K2/9,
can be used to share power supply with another
CAN-bus node

open*J6

close to activate CAN-bus termination by R5
(required at both bus end points)

open*J5

1=VCC, 2=PT2, 3=PT3, 4=GND
if pin 2 and pin 3 are connected during reset,
monitor autostart becomes active

open*J4

optional; same pin-out as J4; may be used as
I2C-bus connection (requires software driver)

not
equip'd

J3

Connection (solder pads) to
ChipS12 pin 3..20

not
equip'd

J2

Connection (solder pads) to
ChipS12 pin 21..40

not
equip'd

J1

ChipS12 supply voltage VCC=5V 2-3*

ChipS12 supply voltage VCC=3.3V (ICC<0.1A!)1-2J0

* = factory default

User Manual

35

Schematic Diagram
To ensure best visibility of all details, the schematic diagram of the

ChipS12 Carrier Board is provided as a separate document.

Notes on Power Supply
On the carrier board, the voltage regulator VR2 can deliver up to

100mA (see data sheet of the LE33). This value is more than sufficient
for the ChipS12 Module alone. However, if additional external compo-
nets are connected, the limit could easily be exceeded. In this case the
total current consumption should be monitored (e.g. on jumper J8, pins
1 and 2)!

The LC-display LCD1 is always 5V-powered, even if the controller
module is operated with 3.3V. The R/W-input of the LCD is perma-
nently connected to L-level, so display control is done by write accesses
only. The 3.3V-CMOS-outputs of the microcontroller deliver sufficient
voltage levels to drive the 5V-TTL-inputs of the LC-display.

ChipS12

36

